
Proceedings of the 1st
International Workshop on Model-
Driven Product Line Engineering

(MDPLE'2009)

Mira Mezini, Danilo Beuche, Ana Moreira (Eds.)

CTIT PROCEEDINGS

feasiPLe Project

Organizing committee
• Mira Mezini, Technische Universität Darmstadt, Germany
• Danilo Beuche, puresystems GmbH, Germany
• Ana Moreira, Universidade Nova de Lisboa, Portugal

General workshop organization
• Tom Dinkelaker, Technische Universität Darmstadt, Germany
• Martin Monperrus, Technische Universität Darmstadt, Germany
• Sebastian Oster, Technische Universität Darmstadt, Germany

Program committee
• Uwe Aßmann, Technische Universität Dresden, Germany
• Danilo Beuche, puresystems GmbH, Germany
• Krzysztof Czarnecki, University of Waterloo, Canada
• Steffen Göbel, SAP Research, Germany
• Mira Mezini, Technische Universität Darmstadt, Germany (PC Chair)
• Martin Monperrus, Technische Universität Darmstadt, Germany
• Ana Moreira, Universidade Nova de Lisboa, Portugal
• Richard Paige, University of York, United Kingdom
• Klaus Pohl, University DuisburgEssen, Germany
• Julia Rubin, IBM Research, Haifa, Israel
• Andreas Rummler, SAP Research, Dresden, Germany
• Andy Schürr, Technische Universität Darmstadt, Germany
• Nathan Weston, Lancaster University, United Kingdom
• Steffen Zschaler, Lancaster University, United Kingdom

Additional reviewers
• Tom Dinkelaker
• Florian Heidenreich
• Kim Lauenroth
• Ralf Mitschke
• Sebastian Oster
• Christian Wende

Participant List
• Aksit, Mehmet (University of Twente, The Netherlands)
• Balmelli, Laurent (IBM, USA)
• Beuche, Danilo (pure::systems, Germany)
• Bombino, Massimo (Artisan Software Tools)
• Botterweck, Goetz (LERO, Ireland)
• Buchmann, Thomas (University of Bayreuth, Germany)
• Cancila, Daniela (CEA, France)
• Champeau, Joel (LiSyCENSIETA, France)
• Dinkelaker, Tom (Technische Universitaet Darmstadt, Germany)
• Dotor, Alexander (University of Bayreuth, Germany)
• Galvao, Ismenia (University of Twente, The Netherlands)
• Garcés, Kelly (INRIAEMN, France)
• Gondal, Ali (University of Southampton, UK)
• Hartman, Alan (IBM Research, Israel)
• Kirshin, Andrei (IBM Research, Israel)
• Mansell, Jason (European Software Institute, Spain)
• Monperrus, Martin (Technische Universitaet Darmstadt, Germany)
• Naeem, Muhammad (University of Leicester, UK)
• Olsen, Goran (SINTEF, Norway)
• Paige, Richard (University of York, UK)
• Siikarla, Mika (Tampere University of Technology, Finland)
• Trew, Tim (NXP Semiconductors)
• Trujillo, Salvador (IKERLAN, Spain)
• Van Baelen, Stefan (KU Leuven, Belgium)
• Wende, Christian (TU Dresden, Germany)
• Westfechtel, Bernhard (University of Bayreuth, Germany)

Table of Contents

• Summary of the 1st International Workshop on 1
Model-Driven Product Line Engineering

• Interactive Techniques to Support the Configuration of
Complex Feature Models 3
Goetz Botterweck, Denny Schneeweiss, Andreas Pleuss

• Constraints for a fine-grained mapping of feature models and executable domain
models 11
Thomas Buchmann, Alexander Dotor

• Feature Composition – Towards product lines of Event-B models 20
Ali Gondal, Michael Poppleton, Colin Snook

• Functional Hazard Assessment in Product-Lines - A Model-Based Approach 28
Ibrahim Habli, Tim Kelly, Richard Paige

• Flexible Service Specification and Matching Based on Feature Models 36
Muhammad Naeem, Reiko Heckel

• Is Model Variability Enough? 45
Salvador Trujillo, Josune De Sosa, Ander Zubizarreta, Xabier Mendialdua

• A Model-based Product-Line for Scalable Ontology Languages 51
Christian Wende, Florian Heidenreich

• Multi-Variant Modeling: Concepts, Issues, and Challenges 59
Bernhard Westfechtel, Reidar Conradi

Summary of the 1st International Workshop on
ModelDriven Product Line Engineering

The 1st International Workshop on ModelDriven Product Line Engineering
(MDPLE'2009) was held on June, 24th 2009, in the University of Twente (The
Netherlands) in conjunction with the European Conference on ModelDriven
Architecture (ECMDA'2009).

ModelDriven Software Development (MDD) as well as Software Product Lines
(SPL) related concepts, techniques, and tools have without any doubts the
potential to increase the productivity and quality of software engineering
processes significantly. However, industry is struggling to adopt these ideas on a
large scale. And from an academic point of view we still do not know how to
integrate these two areas systematically, i.e. (1) how to adapt and apply MDD
techniques for the development of software product lines and related
engineering tools and (2) how to integrate SPL concepts for the development of
families of models, metamodels, model transformations, and modeling
languages. The MDPLE'2009 workshop was a place to publish work in this
research field and to identify research opportunities.

This workshop brought together researchers, lecturers, graduate and Ph.D.
students with industrial practitioners, who are interested in both software
product lines (SPLs) and modeldriven architecture (MDA). We have discussed
the appropriateness of today's approaches, techniques, infrastructures, and
language support and to share ideas from both communities. The workshop
organization was sponsored by the feasiPLe research project, funded by the
German Federal Ministry of Education and Research (BMBF), and the AMPLE
project (EU FP6).

There were 26 participants in the morning session and 23 participants in the
afternoon session. There were 2 invited talks, given by Danilo Beuche
(pure::systems, Germany) and Mehmet Aksit (University of Twente), and 8
presentations of the accepted papers (6 full papers and 2 position papers). In
order to identify research issues in software product line and modeldriven
engineering, there was a collective brainstorming discussion of 1h 30min at the
end of the presentations. The process of the discussion was as follows:

• In the morning session, each participant was asked on a voluntary basis,
to write down anonymous polemical questions about the stateoftheart
of software product lines.

• At the beginning of the discussion, each participant was asked to
introduce himself and to list its main research interests w.r.t. SPLE.

• Then, we collectively clustered the collected questions and research
interests as a set of research topics.

• We discussed the topics onebyone. The participants were asked to give
their opinion on each research topics.

1

The workshop enabled us to establish a list of what are the important and
difficult research topics in SPLE:

• There is too much attention given on the technology supporting SPLs (e.g.
modeldriven) and not on the methods to analyze and identify the
business value of SPLs. This was nicely summarized as a need for moving
from modeldriven to businessdriven SPLs. Also, such methods would
bridge the gap between the researchers, tool providers, and their
customers.

• Research has proposed many feature model extensions. However, from
the viewpoint of industry, there is a need for a standardized feature
metamodel.

• There is not only variability in products but also in product generators
(e.g. DSLs, model transformation and metamodels). The community has
to provide concepts and tools to build adaptable and parametrized DSLs
and model transformations.

• The space of software products is usually considered as finite and closed.
In an open and dynamic context such as a service oriented architecture,
the known techniques are not applicable. There is need for studying
variable service oriented architectures.

• By marrying formal methods and product generation, it could be possible
to achieve "correctness by construction". However, from a pragmatic
viewpoint, runtime verification of products is also an open issue.

• There is a need for supporting traceability of design rationales all along
the product specification and generation.

• The one to one mapping between features and implementation artifacts is
considered as a good design pattern of SPLs. However, the technology
rarely supports the vision. There is still room to improve existing
techniques (e.g. virtual classes, mixins, aspects, (meta)model
composition) to fulfill this vision.

• Important yet unaddressed issues in SPLs are related to usability and
cognitive limits of users and tools (real world SPL models can not fit on a
single screen). There is need for exploring new visualization of both the
SPLs (e.g. visualization of feature models) and the products (e.g.
visualization of configurations). Also, it has been recognized that
interactive approaches to specifying products is a hot topic.

To conclude MDPLE'2009, we hope this compiled research agenda will help
graduate students to identify relevant topics, researchers to write proposals and
the the whole community to identify potentials of future collaborations.

2

Interactive Techniques to Support the

Con�guration of Complex Feature Models

Goetz Botterweck1 and Denny Schneeweiss2 and Andreas Pleuss1

1 Lero, University of Limerick, Ireland,
{goetz.botterweck|andreas.pleuss}@lero.ie

2 BTU Cottbus, Germany,
denny.schneeweiss@tu-cottbus.de

Abstract. Whenever a software engineer derives a product from a prod-
uct line, he has to resolve variability by making con�guration decisions.
This con�guration process can become rather complex because of depen-
dencies within the variability model and knock-on e�ects and dependen-
cies in other related artefacts. Because of the limited cognitive capacity of
the human engineer, this complexity limits the ability of handling prod-
uct lines with large con�guration spaces. To address this problem we
focus on techniques that support the interactive con�guration of larger
feature models, including (1) visual interaction with a formal reason-
ing engine, (2) visual representation of multiple interrelated hierarchies,
(3) indicators for con�guration progress and (4) �ltering of visible nodes.
The concepts are demonstrated within S2T 2 Con�gurator, an interactive
feature con�guration tool. The techniques are discussed and evaluated
with feature models, however, we believe they can be generalised to other
models that describe con�guration choices, e.g., variability models and
decision models.

1 Introduction

In Software Product Line (SPL) Engineering we are dealing with interrelated,
complex models. A common concept for modelling a product line are feature
models. They are usually interpreted as a tree structure consisting of feature-
subfeature and group-member relations. In addition, there are other relationships
across the hierarchy and across di�erent levels (e.g., requires, mutex). The most
common visual representation for such models is a graph [1,2].

When deriving products from a product line, the software engineer has to
resolve variability by making con�guration decisions. This con�guration pro-
cess and the decisions can become rather complex because of the dependencies
within the variability model and knock-on e�ects and dependencies in other re-
lated artefacts that represent the product line. Because of the limited cognitive
capacity of the human engineer, this complexity limits the ability of handling
product lines with large and complex con�guration spaces.

Hence, there is a need for tool support for product con�guration. Exist-
ing commercial feature modelling software like pure::variants [3] provide basic

3

graph-based visualisations of feature models. Heidenreich et al. [4] introduce Fea-
tureMapper, which supports mapping features to model elements in arbitrary
(EMF-based) models. The mappings are expressed by colouring the elements
corresponding to each feature. However, there is still a lack of more advanced
visual and interactive tool support for handling product derivation.

We address this problem with S2T 2 Con�gurator a feature con�guration tool
which integrates an interactive visual representation of the feature model with
a formal reasoning engine, that calculates consequences of the user's decisions
and provides formal explanations.

In addition, we support to visualise the relationships between selected fea-
tures and further aspects of the software product line, like a component model
specifying the architecture. This requires to present multiple hierarchies (e.g.,
features and components) as well as the relationships between them, e.g., which
features are implemented by which components.

In earlier work [5] we discussed the visualisation of product lines. In [6] we in-
troduced the software architecture for our Con�gurator tool, designed as a chain
of con�gurator components, to allow �exible integration of di�erent models and
a formal reasoning engine. In this paper we focus on interaction techniques which
support the interactive con�guration of larger feature models, including the vi-
sual interaction with the reasoning engine (section 3.1), visual representation
of multiple interrelated feature trees (section 3.2), indicators for con�guration
progress (section 3.3) and �ltering (section 3.4). All described techniques have
been implemented in a prototype which is available for download3.

2 Analysis of Possible Solutions

To address the con�guration of complex feature models, we evaluated visual-
isation techniques with respect to their suitability for typical structural char-
acteristics of such models. Feature models are usually structured as hierarchies,
made up of feature-subfeature and group-member relations [1,2]. In addition, de-
pending on the type of feature model, there can also be arbitrary relationships
between models elements, independent of the main hierarchy (cross-tree con-
straints or intra-model relations). Further challenges are given by large models
(not �tting on the canvas) and multiple, interrelated models with relationships
between them (inter-model relations).

We classify the evaluated approaches into techniques for visualisation of tree
hierarchies (section 2.1), interaction techniques for large data structures (sec-
tion 2.2), and approaches focussing on multiple hierarchies (section 2.3).

2.1 Visualisation of Tree Hierarchies

The area of Information Visualisation provides various alternative approaches
to visualise tree hierarchies:

3 http://download.lero.ie/spl/s2t2/

4

Space-�lling visualisations such as tree-based maps [7] or Sunbursts [8] pro-
vide an insight into the quantitative relations within a hierarchy. Although these
types of visualisations are quite e�ective in this respect, feature model visual-
isations in general do not bene�t from it. It is di�cult to enrich them with
additional information (i.e., text rendering in small cells is problematic) and
displaying relations between elements leads in almost all cases to visual clutter.
This problem gets even worse with multiple hierarchies.

Three-dimensional visualisations such as Cone Trees [9] are problematic when
applied in interactive con�gurations since certain elements may be hidden by
others. Moreover the navigation and orientation within a 3D environment is
challenging for most users.

In general, various user tests on tree visualisations have shown that mature
common tree visualisation systems (like �le explorers) often perform as good or
even better as alternative visualisations (e.g., [10]). Thus, it seems reasonable
for feature model visualisation to decide for a conventional 2D tree visualisation
and put e�ort on its optimisation and enhancement. As a �rst step, techniques
from Graph Drawing can be used to reduce the graph's complexity, e.g., by
minimising intersections, providing a well-structured spatial layout or reducing
the required area.

2.2 Interaction Techniques for Large Data Structures

The second important area arises from the interactive nature of the Con�gurator
tool. Certain interaction techniques enable the user to focus on the information in
the centre of his or her interest while muting currently unimportant information.
Common techniques in these area are for instance [11]:

The overview+detail interface design, which is characterised by the use of
both an overview and a detail view of the same information space, in separate
presentation spaces (spatial separation of focus and detail).

focus+context interfaces integrate both details and overview seamlessly
into a single display (spatial separation, but with a seamless integration).

A zooming interface design provides access to overview and detail in tempo-
ral separation. Here the users �rst zoom out to get an overview and then zoom
in to see the details.

These are promising approaches and are applied in our tool. To identify
which elements are part of the user's focus and which elements are outside of
the scope of interest at one point of time it is necessary to consider domain-
speci�c knowledge and the semantics of the models.

2.3 Approaches for Visualising Multiple Hierarchies

Approaches focussing on multiple hierarchies are useful when visualising the
relationships between features and other models as explained above. Robertson
et al. de�ne polyarchies [12], multiple hierarchies that share nodes. They describe
the visualisation design and a system architecture for displaying polyarchy data

5

from a set of hierarchical databases. They use various animated transitions when
switching between the related hierarchies to allow the user to keep context.
Polyarchies are somewhat similar our multiple related hierarchies, but lack the
intra-model relations and the aspect of progressing con�guration.

In later work the authors address visual mappings between two hierarchical
schemas [13]. They use auto-scrolling and focusing-techniques to display distant
related elements within the boundaries of the screen. Again the data structures
are di�erent from feature models (no intra-model relations etc.); nevertheless
some of the interaction techniques could be adapted for feature models.

3 Interactive Techniques in the S2T 2 Con�gurator

As argued above, we chose a two-dimensional tree hierarchy as the basic vi-
sualisation. The con�gurator supports all basic interaction techniques for tree
structures like collapse/expand functionality, panning, and seamless zooming.
The following sections describe the more advanced features in greater detail.

3.1 Interaction with Formal Semantics

The S2T 2 Con�gurator integrates a reasoning engine that supports interactive
functionality such as calculating the consequences of his or her decisions based
on the formal semantics of the models [6]. We interpret a feature model as
(1) a set of features and (2) a set of constraints over these features. Moreover,
(3) we interpret features as variables with value domains limited by the given
constraints. For instance, in boolean feature models, there are four potential
con�guration states: Undecided {true, false}, Selected {true}, Eliminated {false},
and Unsatis�able {}. During the con�guration process, each user decision�and
the consequences calculated from it�are interpreted as additional constraints
further reducing the available values in the domains. When the con�guration
process is completed and all variability has been resolved, there is exactly one
possible value left for each feature. Similar concepts can be de�ned for non-
boolean feature models by allowing larger value domains (e.g., to specify the
maximum price for a car).

Figure 1 shows screenshots from our tool with a small example feature model.
The basic visualisation follows common tree-based feature model representations.
Additionally, a symbol represents the feature's state: a check mark indicates that
the feature is selected, while a cross indicates that the feature is eliminated. The
user can modify the feature's state by clicking on this area. Symbols in grey
colour indicate that the state is already given by constraints and cannot be
changed.

When the model is initially loaded and after each user decision, the reasoning
engine automatically calculates the consequences and applies them to the model.
In �gure 1(a) the Con�gurator inferred that Injection has to be selected as it
is required by the mandatory Engine. The screenshot shows the moment where
the user sets the feature KeylessEntry as selected. As it requires the feature

6

(a) Calculated consequences. (b) Explanations for consequences.

Fig. 1. Con�guration with consequences and explanations.

PowerLocks, the Con�gurator automatically sets PowerLocks as selected as well.
Whenever the Con�gurator automatically applies changes, this is indicated with
an animated blue decoration.

The annotations on the right-hand side in each node denote whether a fea-
ture's state has been set by the user (U), is a consequence from a user decision
(UC) or is speci�ed by the model (M).

Although in such simple examples the reasons for a consequence are obvi-
ous, in more complex feature models the user might not immediately compre-
hend the situation. Hence, the Con�gurator supports visual explanations, which
are based on formal explanations calculated by the reasoning engine. This en-
ables the user to ask for an explanation (using the context menu) why a certain
feature is selected/eliminated. For instance, in �gure 1(b) when the user asks
why PowerLocks is selected automatically, the Con�gurator will respond by
highlighting KeylessEntry and the Requires edge between KeylessEntry and
PowerLocks.

3.2 Multiple Related Models

Due to its modular design described in [6], S2T 2 Con�gurator supports the seam-
less integration of di�erent kinds of models. As discussed earlier, one goal is to
visualise multiple interrelated hierarchies while supporting the user's orientation
within the complex model, e.g., by avoiding intersections of edges and similar
visual clutter.

The Con�gurator supports di�erent tree-layouts, e.g., a vertical tree layout
with indentations, see �gure 2(a). Hierarchy edges are rendered rectilinear while
additional relations are shown as semicircles with adjusted diameters. Thus, we
avoid crossing feature with edges and two edges only intersect if their nodes are
interleaved. Moreover, edges that start and end in similar positions can be easily
distinguished in most cases since they usually di�er in their horizontal extend.

For the visualisation of two interrelated models we adapted this approach by
positioning the trees side-by-side and changing the orientation of the left model

7

(a) Vertical Tree Layout with
semicircles.

(b) Multiple feature hierarchies and their rela-
tionships

Fig. 2. Approaches to avoid clutter in hierarchies with cross-model-relations

to be rendered with right-aligned nodes, see �gure 2(b). Intra-model relations
are rendered as semicircles on the outer side of each model, inter-model relations
as cubic splines connecting both models. With this layout variation the clutter
is kept in reasonable bounds even with two interrelated models.

Our tool supports displaying more than two hierarchies, but then it becomes
hard to avoid intersections. Hence, we recommend to avoid such scenarios by
letting the user interactively chose two models to be displayed on the left- and
right-hand side; similar to common �le manager tools like Norton Commander.

3.3 Progress Indicators

With progress indicators we aim to distinguish areas that have been con�gured
from areas that still need attention. A feature node is con�gured if all decisions
with respect to this feature have been made. In general, this is the case if the
value domain has been reduced to one element; for boolean feature models this
means that the feature is either Selected or Eliminated.

If we aggregate the con�guration state of all nodes in a subtree, we can distin-
guish between three levels of progress for the subtree, Uncon�gured, Partly con-
�gured, and Completely con�gured. If we apply results from research on colours
and selective attention, we can colour the root of each subtree accordingly and
draw the user's attention to those locations where decisions are pending. When
the con�guration process progresses these colours change and become less emer-
gent. Figure 3(a) shows this in a simple feature model.

8

UnconfiguredPartly Configured

Completly Configured

(a) Progress indicators.

Focussed Element

Related Element

Mutex.
Relationship

Location Indicators (Ancestors)

(b) Filtering.

Fig. 3. Progress indicators and �ltering.

3.4 Filtering

Another technique to improve the interaction with complex models is to (1)
di�erentiate between elements that are currently relevant (�in focus�) and those
that are not and (2) use this categorisation in appropriate interaction techniques,
e.g., by �ltering out non-relevant information.

To �nd relevant nodes, we partitioned the model elements into four sets:
Focussed elements, Related elements (linked directly or indirectly to focussed el-
ements), Location indicators (necessary to understand the logical position within
the overall model, e.g., all ancestors of focussed elements), and Other elements.

Whenever the user focusses on one feature (double click) the Con�gurator
calculates the (directly) related elements. The user can then hide all other ele-
ments to concentrate on the current con�guration decision (see �gure 3(b)). We
also display the ancestors of the focussed element to show the relative position
within the model.

4 Conclusions and Future Work

In this paper we have discussed techniques that support the interaction with and
con�guration of complex feature models. The techniques have been demonstrated
with the research prototype S2T 2 Con�gurator. A beta version of the prototype
is available at http://download.lero.ie/spl/s2t2/.

After the initial design and realisation of the discussed techniques we gained
more insights by experimenting with three test cases: (1) Generated feature
models with varying sizes and distributions of element types (2) a product line
of parking assistant applications [14] and (3) a calculator case study [15], which
contains a feature model and a model of the implementation as well as feature-
implementation mappings. In general, this allowed us to perform a �rst internal
evaluation of our approach. In summary, the introduced techniques seemed to
improve the situation with respect to the size of models that can reasonably
be handled. As next steps we plan to perform user tests and provide a formal
evaluation to substantiate this with empirical evidence. Based on that experience
we intend to extend the Con�gurator, e.g., de�ning additional �ltering rules
based on common tasks in product-line engineering.

9

Acknowledgments This work was partly supported by Science Foundation
Ireland grant 03/CE2/I303_1 to Lero � The Irish Software Engineering Research
Centre (http://www.lero.ie/).

References

1. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature oriented domain
analysis (FODA) feasibility study. SEI Technical Report CMU/SEI-90-TR-21,
ADA 235785, Software Engineering Institute (1990)

2. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process Improvement and Practice 10(1)
(2005) 7�29

3. Beuche, D.: Variants and variability management with pure::variants. In: 3rd
Software Product Line Conference (SPLC 2004), Workshop on Software Variability
Management for Product Derivation, Boston, MA (August 2004)

4. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: Mapping features to
models. In: ICSE Companion '08. (2008) 943�944

5. Botterweck, G., Thiel, S., Nestor, D., bin Abid, S., Cawley, C.: Visual tool support
for con�guring and understanding software product lines. In: SPLC 2008, Limerick,
Ireland (September 2008)

6. Botterweck, G., Janota, M., Schneeweiss, D.: A design of a con�gurable feature
model con�gurator. In: VAMOS 2009. (2009)

7. Johnson, B., Shneiderman, B.: Tree-maps: A space-�lling approach to the visual-
isation of hierarchical information structures. IEEE Visualization (October 1991)
189�194

8. Stasko, J., Zhang, E.: Focus+context display and navigation techniques for en-
hancing radial, space-�lling hierarchy visualizations. In: Proc. of IEEE Information
Visualization 2000, Salt Lake City, UT (2000) 57�65

9. Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3d visualiza-
tions of hierarchical information. In: CHI '91. (1991) 189�194

10. Kobsa, A.: User experiments with tree visualization systems. In: INFOVIS '04:
Proceedings of the IEEE Symposium on Information Visualization, Washington,
DC, USA, IEEE Computer Society (2004) 9�16

11. Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming,
and focus+context interfaces. ACM Comput. Surv. 41(1) (2008) 1�31

12. Robertson, G., Cameron, K., Czerwinski, M., Robbins, D.: Polyarchy visualiza-
tion: Visualizing multiple intersecting hierarchies. In: CHI'02. Visualizing Patterns,
ACM Press (2002) 423 � 430

13. Robertson, G.G., Czerwinski, M.P., Churchill, J.E.: Visualization of mappings
between schemas. In: CHI '05, New York, NY, USA, ACM (2005) 431�439

14. Polzer, A., Kowalewski, S., Botterweck, G.: Applying software product line tech-
niques in model-based embedded systems engineering. In: MOMPES 2009, Work-
shop at ICSE 2009, Vancouver, Canada (May 2009)

15. Lee, K., Botterweck, G., Thiel, S.: Aspectual separation of feature dependencies
for �exible feature composition. In: COMPSAC 2009, Seattle, WA (July 2009)

10

Constraints for a fine-grained mapping of feature
models and executable domain models

Thomas Buchmann and Alexander Dotor

Angewandte Informatik 1, Universität Bayreuth
D-95440 Bayreuth

firstname.lastname@uni-bayreuth.de

Abstract. In the past, several approaches have been made to combine feature
models and domain models on the level of class diagrams. But the model-driven
development approach also covers models that describe the behavior of a software
system. In this paper we will describe a mapping of feature configurations to
executable model elements which is one step towards an overall model driven
process for product line engineering. We will specify consistency constraints that
have to be met to ensure model correctness, and we will discuss the problems that
arise during the final model-to-code transformation.

1 Introduction

The term model-driven development [1] of software systems describes the creation of
systems by specifying models instead of writing code. Usually these models are cre-
ated in CASE tools which provide class diagrams to model the static structure of a
software system. These kind of diagrams lack the ability to model variability. In the
context of software product lines [2], feature models are used to model variability in
a family of software systems. Recently some approaches have been made to combine
feature models and domain models created with CASE tools [3], [4], [5]. But model-
driven development is more than just creating models that describe the static structure
of a system - the behavior has to be described as well. In our current work, we develop
a model-driven product line for Software configuration management (SCM) systems.
The benefits of a model driven approach are (1) making the underlying models explicit,
rather than having them implicitly defined in the program code, (2) providing reusable
modules which can be combined in a flexible way through defining orthogonal compo-
nents which are loosely coupled and (3) support rapid construction of new systems by
providing a product line. The domain model of our product line consists of both class
diagrams and behavioral diagrams. In the following we will discuss our approach to
map features on elements of both structural and executable behavioral models which is
one step towards a well-defined model-driven development process for software product
lines.

2 Background

In our work we try to bridge the gap between features in a variability model and model
elements of a system family. In a model-driven process a system configuration should

11

2 Thomas Buchmann and Alexander Dotor

Define
Feature Model

Define
Fujaba Model

Feature
Model

Fujaba
Model

Annotate
Fujaba Model

Instantiate
Configuration Configuration

Annotated
Fujaba Model

Generate
Code

Configured
Java Code

Feature Model

Domain Model

Fig. 1. The MDD process which combines Feature models and domain models using annotations

be mapped automatically to the domain model, and code for the specific feature selec-
tion should be generated. We use the CASE tool Fujaba [6] to create the executable
domain model for the modular SCM system mainly because of its support for exe-
cutable models. The added value compared to other CASE tools is provided by story
diagrams (see p. 6) and their compilation into executable code. In contrast, code gen-
eration from class diagrams is supported by a large number of other CASE tools as
well, like e.g., in the Eclipse Modeling Framework [7]. Due to space restrictions, we
can not provide detailed information about the domain model itself. Information how
the domain model has been designed to support orthogonal combination of features and
how the behavioral model may be defined in a graphical notation at a level of abstrac-
tion above the (generated) program code, can be found in [8], [9] and [10]. Feature
modeling was applied to define common and discriminating features of SCM systems.
In the context of product line engineering, feature models are widely used. So far, we
have defined no constraints on the combination of features (apart from those constraints
which are expressed directly in the feature diagram itself). An essential goal of our
project is building a product line for SCM systems where features may be combined
as freely as possible. However, the major effort has to be invested into the design of
a system which actually supports the features defined in the feature model. Defining
the feature model itself is fairly easy. In our approach the domain model was annotated
manually with features, to establish a mapping between elements of the domain model
and the feature model respectively. These annotations can be performed on any level of
granularity. On a coarse-grained level, units such as packages, classes and associations
are decorated with features, whereas on a more fine-grained level, attributes, methods
and even story patterns etc. can be decorated. The coarse-grained approach keeps the
multi-variant architecture manageable. But it is up to the modeler’s discipline to use
the feature annotations carefully. In an extensive way of using feature annotations, the
modeler may easily lose track and may face a degree of complexity which cannot be
managed anymore. During the code generation process, these feature annotations are
evaluated against a given system configuration which is specified in FeaturePlugin [3]
and only code for selected elements is generated (see Fig. 1).

12

Constraints for a fine-grained mapping of features & domain models 3

3 Technical Problem

To generate code for a system configuration, a mapping has to be established between
features of the feature model and the model elements of the domain model. We chose
tagged values containing the name of the features to realize this mapping. If a feature
is selected in a configuration the model elements with its name have to be part of the
configured domain model. Each model element can be tagged by multiple features, in
which case they are evaluated analogous to a logical and (i.e., all features have to be
selected). This means also, that untagged model elements are always part of the config-
ured model. The mechanism to tag the model elements varies slightly between different
metamodels. In UML, stereotypes with feature names can be used ([11], pp. 651), while
e.g., Ecore provides annotations ([7], pp. 119).

Our ultimate goal is to generate executable code from the configured model. There-
fore, the transformation of the domain model into a configured domain model can be
viewed as analogy to a preprocessing step of a compiler – a code generation pre-
processor. As a consequence we have to deal with the same problems as compiler
preprocessors: it is easy to produce syntactically and semantically wrong code.

Take the following example: Figure 2 shows a class diagram whose class B has been
tagged by a feature named sampleFeature. As long as the sampleFeature is part of the
configurations everything runs well, but as soon as it is omitted several problems occur
(assuming only class B is omitted from the configured model):

1. Both generalizations have either no target or no source.
2. Both associations have only one member end.
3. Both class X and class Y have a Property of a non-existing type.
4. print J from A in C fails during opaque expression analysis step (e.g., during com-

pile time, see [11], pp. 101), as C is no A anymore, so j cannot be accessed.
5. print I from B in Y fails also, as B is not associated with X anymore, so i cannot

be accessed

This example shows that several syntactical constraints have been violated in the con-
figured domain model, e.g., associations and generalization with only one end node.
These problems are violating UML metamodel constraints. But another kind of prob-
lem can only be detected during compile time, e.g., the broken inheritance hierarchy.

-j : String
A

+print_J_from_A()

C

-i : string

«sampleFeature»
BX

+print_I_from_B()

Y-x

*

-b

*

-b

*

-y

*

Fig. 2. Example of a tagged class diagram

13

4 Thomas Buchmann and Alexander Dotor

This leads to the question, if there is a set of consistency rules to maintain syntactical
correctness both when configuring a tagged domain model and when generating code
for the configured domain model.

4 Solution

If the tagged domain model is syntactically correct all errors in a configured domain
model result from the removal of tagged elements (this is quite similar to the deletion
of model elements). An untagged element is present in every configured domain model.
A tagged element is only present in the subset of configured domain models associated
with the conjunction of the features it has been tagged with. So, if another element
depends on a tagged element the following rule holds:

Rule 1: If model element A depends on model element B, the set of configured
domain models containing A must be a subset of the set of configured domain
models containing B.

Or, thinking in terms of tags, the constraints must ensure that every tag on an element
is present on its dependent elements, i.e., the tag set on element B must be a subset of
element A1.

4.1 Constraints for UML metamodel violations

This set of constraints is obtained by analyzing the UML Superstructure Specification
[11]. All these rules works transitively, i.e., they have to be applied until no further tags
are added.

Rule 1.1: If an element is tagged all owned elements are tagged, too.

The basic Element of the UML Superstructure Specification introduces an aggrega-
tion between an owner-Element and its owned elements ([11], p. 25). By ana-
lyzing the inheritance hierarchy of the UML Superstructure we can define following
dependencies (see Table 1).

Rule 1.2: If the target of a directed relationship is tagged the relationship is
tagged, too.

Each DirectedRelationship must have a source and a target ([11], p. 25). The
source of a DirectedRelationship is always the owner, so rule 1 insists that a
tagged source implies a tagged DirectedRelationship. This is also the case if
the target is tagged which is demanded by this rule. The dependencies for the concrete
elements are shown in Table 2.

Rule 1.3: If the member end of an association is tagged the association is
tagged, too.

1 Please note that the direction of the subset relation has changed, because more tags mean less
configured domain models.

14

Constraints for a fine-grained mapping of features & domain models 5

Tagged type Elements to be tagged (type)
Association owned rules (Constraint), outgoing imports

(ElementImport or PackageImport), generalizations
to super-associations (Generalization), non-navigable or
n-ary roles (Property)

Class nested classes (Class), owned rules (Constraint), outgo-
ing imports (ElementImport or PackageImport), gen-
eralizations to superclasses (Generalization), defined op-
erations (Operation), defined attributes (Property)

Constraint constraint definition (ValueSpecification)
ElementImport none
Generalization none
Operation pre-/post and body conditions (Constraint), parameters

(Parameter)
Package contained associations (Association), contained classes

(Class), owned rules (Constraint), outgoing imports
(ElementImport or PackageImport), sub-packages
(Package), outgoing package merges (PackageMerge)

PackageMerge none
PackageImport none
Parameter default value (ValueSpecification)
Property default value (ValueSpecification)
ValueSpecifications2 none

Table 1. Tag propagation Table for concrete UML class diagram elements (Rule 1.1)

Each Association requires at least two member ends. So, in case of tagged proper-
ties, the tags have to be propagated to the association that ends at this property.

Rule 1.4: If an association is tagged the member ends are tagged, too.

If an end of an Association is navigable it is owned by the appropriate Class. In
this case a tagged association requires its member ends to be tagged.

Rule 1.5: If a type is tagged all typed elements of this type are tagged, too.

If a class is tagged which is a target of an uni-directional Association there is no
link to the Property that holds a reference to the source class, because this direction is
non-navigable (see [11], pp. 123). So, the Property of the source class that references
the tagged class is only linked to the tagged class via the type-Association which is
used in this rule.

4.2 Constraints for story diagram metamodel violations

UML provides several behavioral models but – except for state charts – there are no
means to generate executable code. Instead, each Operation has a methodbody-string

2 ValueSpecification is actually an abstract class that represents expressions consisting
of various literals and so called opaque expressions. These expressions are strings associated
with a language, e.g., java source code or OCL expressions that come with their own validator
(i.e., java compiler or OCL checker). See [11], pp. 28 and pp. 101 for a complete definition.

15

6 Thomas Buchmann and Alexander Dotor

Tagged type Elements to be tagged (type)
Association incoming element import (ElementImport), generalization from sub-

association (Generalization)
Class incoming element import (ElementImport), generalization from sub-

class (Generalization)
Package incoming imports (ElementImport or PackageImport), incom-

ing package merges (PackageMerge)
Table 2. Tag propagation Table for concrete UML class diagram elements (Rule 1.2)

that is validated by a languages specific tool (e.g., a java compiler) [11] (pp. 101). The
CASE tool Fujaba provides behavioral modeling through story diagrams, to specify
the body of a method and generate executable code. Story diagrams are activity dia-
gram with two kinds of nodes: Statement activities and story patterns. The first consists
of a fragment of Java code, allowing for seamless integration of textual and graphical
programming. The latter is a communication diagram composed of objects and links.
Furthermore, objects may be decorated with method calls. Elements with dashed lines
represent optional parts of story patterns. A crossed element means that the story pat-
tern may be applied only when the respective element does not exist. In addition to
method calls, a story pattern may describe structural changes: Objects and links to be
created or deleted are decorated with the stereotype <<create>> (green color) or
<<destroy>> (red color), respectively. Furthermore, := and == denote attribute as-
signments and equality conditions, respectively.

Fig. 3. Example of a Fujaba Story diagram

Figure 3 shows a story diagram that adds a new version to a single-dimensioned
version history (i.e., a kind of linked list). The first activity is a collaboration call that
retrieves the ID of the previous version (predID) out of the context-Parameter. The
second is a story pattern. It creats a newVersion and adds it as last element to the
versionSet. If a lastVersion exists already (note this object is optional) whose

16

Constraints for a fine-grained mapping of features & domain models 7

versionID equals the predID it becomes the predecessor of the newVersion.
Ultimately the content is added via method call to the newVersion. Depending
on the outcome of this pattern (successful match or failure) the control flow continues
to a stop node that either returns the new versionID or null. In Fujaba each meta-
model element has a reference to its instances, e.g., a class to its objects, etc. The class
Version has two instances in our example (Fig. 3): lastVersion and newVersion. Instead
of passing the validation to a compiler it is now possible to think in terms of behavioral
model elements and to define further rules to ensure their correctness.

Rule 1.6: If an UML element is tagged all its instances are tagged, too.

When an element of the class diagram is tagged all its instances in all story diagrams
have to be tagged.

Rule 1.7: If a UML Operation is tagged its story diagram is tagged, too.

Each story diagram defines the behavior of a single operation. By tagging an operation
its behavioral specification has to be tagged, too.

Rule 1.8: If an UML element is tagged all instances of owned elements of its
superclasses are tagged in story patterns of its subclasses, too.

This solves the interrupted inheritance tree problem, by tagging all instances of ele-
ments that are not inherited anymore.

If we apply the above rules on the example given in Figure 2, we get the following
result: Rule 1.1 implies that the properties x and y are tagged, as well as the generaliza-
tion to class A. The generalization from class C to class B is tagged according to rule
1.2. Applying rule 1.3 results in tags on both associations. The opposite navigation ends
(b) are tagged because of rule 1.4.

4.3 Open Problems and Limitations

The current version of the Fujaba story diagram metamodel does not link every story
diagram element to its class diagram element, e.g., constraints, transition guards and
collaboration statements. And even after a metamodel expansion, Fujaba still allows
statement activities which contain arbitrary strings. A way to ensure syntactical cor-
rectness of the generated code is to avoid these elements altogether, or to generate and
compile the configured model in the background. Another limitation is the inability to
specify variants of model elements (both in UML and story diagrams) as both meta-
models are not designed for this purpose, e.g., it is not possible to define cardinality
variants for association ends or attribute assignment variants for objects.

5 Related Work

Czarnecki et al. describe in their work about Mapping Features to Models [12] a way to
establish a bidirectional mapping between feature models and Ecore elements, based on

17

8 Thomas Buchmann and Alexander Dotor

Ecore class diagrams (see [4]). It uses many of the same notations and display elements
as a previous version named FeaturePlugin [3]. Unlike FeaturePlugin, which focuses
strictly on feature modelling in an isolated context, Ecore.fmp aims to create Ecore
compliant class diagrams out of existing feature models and vice-versa. In the current
version of Ecore.fmp, the creation of a feature model from an existing Ecore model is
not yet supported properly. The creation of Ecore model files out of feature models also
still needs to be implemented. Since it is tightly coupled with Ecore, it does not support
arbitrary EMF-models or even executable models.

In his work, Florian Heidenreich developed a set of Eclipse plugins that also allows
the user to establish a mapping between features and feature realisations (i.e., model
elements) [13]. The underlying model (feature realisation) can be defined in arbitrary
Ecore-based languages. It provides four different kinds of views, that visualize the cur-
rent feature selection in different ways [14]. The plugin aims at supporting the developer
in the complex task of defining mappings between features / configurations and their
realizations. However, support for executable models is very limited due to Ecore. E.g.,
statecharts, which do not have the same expressive power as Fujaba’s story-diagrams,
can be used to model the behaviour. Furthermore, both Ecore.fmp and Featuremapper
model requirements and components on the same level of abstraction. Ecore.fmp also
has no direct support for modeling in the large [15].

There are also some commercial tools, that support modeling a product line by spec-
ifying feature models, like pure system’s pure::variants. These tools do not provide a
model-driven process to develop a product line in a model-driven way. They only cover
a small part of the product line process - variant management. The configuration of the
final product is done during runtime, for example by specifying defines which are
passed to a C/C++ preprocessor, or by selecting certain sourcecode files. pure::variants
does not support the mapping of features to model elements.

6 Conclusion

In this paper we presented a novel way to combine feature modeling and model-driven
software development, especially when creating executable models. The mapping be-
tween features and model elements was done using model annotations. A configuration
of selected features is used as an input to a special preprocessor which is started be-
fore the actual code generation process. This preprocessor passes model elements with
matching feature annotations to the code generator, and drops model elements that do
not match. In that way it is possible to establish a mapping between feature model el-
ements to elements in executable models on any level of granularity. The code that is
delivered to the customer only contains the fragments which are neccessary for the de-
sired configuration, in contrast to the process of runtime configuration and deploying
the complete codebase [10]. We deduced several rules to ensure syntactical correctness
of the annotated domain model. These rules have been implemented in a plugin which
ensures consistency of the model when generating code. Current work is addressed to
integrate the plugin into the Fujaba editor, to allow using our consistency checks during
the edit process.

18

Constraints for a fine-grained mapping of features & domain models 9

At the moment, our preprocessor only accepts configurations that have been cre-
ated using the FeaturePlugin [3] plugin. We need to build different import modules to
read configurations created with other feature modeling tools like FeatureMapper [5],
Ecore.fmp [4] or commercial tools like pure::variants etc. We will also investigate to
which level of granularity it is possible to annotate the executable model. It is possible
to annotate the static structure at any level of granularity (Classes, methods or even at-
tributes), but does the same also hold for story patterns? E.g., we will try to find out if
it is possible to exclude single story patterns of a story diagram by annotations.

References

1. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-
tice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

2. Clements, P., Northrop, L.: Software product lines: practices and patterns. Volume
0201703327. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

3. Antkiewicz, M., Czarnecki, K.: Featureplugin: Feature modeling plug-in for eclipse.
In: OOPSLA ’04 Eclipse Technology eXchange (ETX) Workshop, Vancouver, British
Columbia, Canada, ACM (Oct. 24-28 2004)

4. Stephan, M., Antkiewicz, M.: Ecore.fmp a tool for editing and instantiating class models as
feature models. Technical report, University of Waterloo (2008)

5. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: Mapping features to models.
In: Companion Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), ACM (May 2008) 943–944

6. Zündorf, A.: Rigorous object oriented software development. Technical report, University
of Paderborn, Germany (2001)

7. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling Framework.
2 edn. The Eclipse Series. Addison-Wesley, Boston (2009)

8. Buchmann, T., Dotor, A., Westfechtel, B.: Triple graph grammars or triple graph trans-
formation systems? a case study from software configuration management,1st international
workshop on model co-evolution and consistency management, mccm 08, toulouse, france,
september 30th, 2008. (2008)

9. Buchmann, T., Dotor, A., Westfechtel, B.: Mod2-scm: Experiences with co-evolving models
when designing a modular scm system. In: 1st International Workshop Co-Evolution and
Consistency Management (MCCM ’08). (2008)

10. Buchmann, T., Dotor, A., Westfechtel, B.: Model-driven development of software config-
uration management systems - a case study in model-driven engineering. submitted for
publication

11. OMG: OMG Unified Modeling Language (OMG UML), Superstructure. OMG. (November
2007) Version 2.1.2.

12. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In: GPCE 05. (2005)

13. Heidenreich, F., Wende, C.: Bridging the gap between features and models. In: 2nd Work-
shop on Aspect-Oriented Product Line Engineering (AOPLE’07). (2007)

14. Heidenreich, F., Şavga, I., Wende, C.: On controlled visualisations in software product line
engineering. In: Proceedings of the 2nd Int. Workshop on Visualisation in Software Product
Line Engineering (ViSPLE 2008). (September 2008) To appear.

15. Buchmann, T., Dotor, A., Westfechtel, B.: Experiences with modeling in the large with
fujaba. In Assmann, U., Johannes, J., Zündorf, A., eds.: Proceedings of the 6th International
Fujaba Days, University of Dresden, University of Dresden (2008)

19

Feature Composition – Towards product lines of
Event-B models

Ali Gondal, Michael Poppleton, Colin Snook

Dependable Systems and Software Engineering Group
University of Southampton, Southampton SO17 1BJ, UK

{aag07r, mrp, cfs}@ecs.soton.ac.uk

Abstract. Event-B is a formal language for modelling reactive systems,
based on set theory and first-order logic. The RODIN toolkit provides
comprehensive tool support for modelling and refinement in Event-B,
analysis and verification using animator/model-checkers and theorem
provers. We consider the need to support reuse, in particular product
line reuse, in such a formal development method.
Feature modelling is an established technique for reuse in product lines.
We introduce concepts of feature modelling and composition in Event-B
to support the reuse of formal models and developments. A prototype
feature composition tool has been developed (as a RODIN plugin) for
Event-B, based on the Eclipse Modelling Framework (EMF). Using an
MDD philosophy, the tool extends the Event-B language metamodel to
a composition metamodel, and implements prototype composition pat-
terns for Event-B features. Thus, a required composite model can be
constructed by selecting, specializing, and composing input features in a
defined way. The tool is the first step towards full feature modelling for
product line model reuse for Event-B. We describe future work required
to meet this goal.

1 Introduction

Formal Methods provide mathematically based languages, tools and techniques
for specifying and verifying systems during construction. They allow identifica-
tion of inconsistencies, ambiguities and defects earlier in the software develop-
ment life-cycle and reduce the need for unit and integration testing [1]. Verifi-
cation conditions called proof obligations (POs) take the form of mathematical
theorems which state correctness properties of models and their refinements.
Successful application of formal methods can be seen in aerospace, transporta-
tion, defence and medical sectors [1, 2]. Improvements in formal specification lan-
guages, verification techniques and robust tools are ongoing, in particular, by the
DEPLOY1 and RODIN2 projects, including industrial partners such as Bosch,
1 DEPLOY - Industrial deployment of system engineering methods EU Project IST-

214158. http://www.deploy-project.eu
2 RODIN - Rigorous Open Development Environment for Open Systems: EU Project

IST-511599. http://rodin.cs.ncl.ac.uk

20

SAP, and Siemens and Space Systems Finland. These projects are developing
tools, as well as strengthening the theoretical base, for the formal specification
language Event-B [3].

Event-B, based on set theory and first-order logic, is used for modelling and
analysing discrete event systems and provides built-in generation and verification
of proof obligations. It is a successor of Abrial’s B language [4], developed in
the RODIN and earlier EU projects. After completion of the RODIN project,
the DEPLOY project is now deploying this work into industry. The RODIN
toolkit [5] provides support for modelling, animation, model-checking and proof
using Event-B. It is an Eclipse based IDE, and easily extensible. Refinement
is the core development process of introducing more details in each step from
abstract specification to the concrete implementation model in Event-B. Any
refined model must be proved to be a true refinement of the abstract model.

A software product line (SPL) refers to a set of related products having a
common base and built from a shared set of resources [6]. SPLs focus on the
problem of software reuse by providing automated ways to build families of
software products sharing commonalities, and differing by variabilities of struc-
ture. Feature modelling is a model-driven approach which gives a means to define
commonalities and variabilities in terms of atomic requirements features. Several
tools have been developed for supporting feature modelling for SPL engineering
[7]. For SPLs of critical systems, there is a need for the automated verification
that formal methods provide. This paper discusses our approach to introduce
product line reuse in Event-B using feature modelling concepts and reports on
tooling developments towards the full Feature Modelling Tool (FMT) for mod-
elling of SPLs in Event-B. The example used in the paper is discussed in section
2. Section 3 gives a technical overview of the Event-B language. The notion
of feature modelling in Event-B is discussed in section 4 followed by the tool
discussion, related and future works in sections 5, 6 and 7 respectively.

2 Feature Composition Example

This example has been taken from the Production Cell [8] case study which we
have modelled in Event-B. This is a reactive system which has been modelled
in a number of formalisms. The purpose of the example here is to demonstrate
the prototype tool that we have developed rather than its Event-B modelling.
There were multiple features in Production Cell model but we only consider two
features here for brevity, i.e. feed belt and table. Metal blanks enter the system
through the feed belt and are dropped one by one on to the table from where
other components such as a robot may pick them up and deliver them to another
component for further processing. It happens in this example that features map
to physical components of the system, e.g. table, robot etc. We chose this example
to represent a product line of Production Cell systems, where different feature
configurations result in different instances of a Production Cell. Variabilities
are the number and connectivity of features, e.g. we can build a system with

21

multiple robots and belts to increase throughput. All the features are modelled
generically for use in various configurations, and are verified separately.

(a) Feature Composition (b) Sub-Feature Composition

Fig. 1. Feature Composition Editor

3 Event-B Language

An Event-B model consists of a machine - modelling dynamic data and behaviour
- and zero or more contexts - modelling static data structures or configurations.
This separation of behaviour allows the use of different contexts to parametrize
the machines. Note that there is no concept of modularization in Event-B, so
a model represents a complete system at a particular level of refinement. The
state transition mechanism over the machine’s variables is given by the event,
which comprises parameters (also called arguments or local variables), guards
and actions. The guard is a condition on the event parameters and machine
variables that defines the enabledness of the event: the event is only enabled when
all of its guards are true. The action is the update operation on a state variable.
The syntax of an event e with guards G, variables v and actions A is: e = when
G(v) then A(v). Examples of two events (UnloadFB & LoadTbl) can be seen on
Fig. 1(b). The invariant is a state predicate specifying correctness properties
that must always hold. Variables are typed by invariants. Many POs concern
invariant preservation, i.e. correctness of the system is defined and preserved
through the invariants. All events must preserve invariants and any violation of
invariants will lead to the system being inconsistent. An INITIALIZATION event
is used to specify the initial values for the variables.

22

The context (static data) in Event-B contains sets, constants, axioms and
theorems. Sets are used to define the types and axioms describe the properties
of the constants. Theorems must be proved to follow from axioms.

Event-B provides support for refinement where structural and algorithmic
detail can be added during each refinement step; new events can be added and
existing events can be extended. Variables may be added or transformed. Re-
finement will usually reduce non-determinism. Similarly, contexts can also be
extended to add more details to the model. Refinement proof obligations are
generated by the tool to verify that a refined model is a correct refinement of
the abstract model. An EMF [9] metamodel for Event-B has been developed as
part of the DEPLOY project.

4 Feature Modelling in Event-B

Feature modelling is a well-known technique for reuse in product lines. Method-
ologically speaking, for its application in an Event-B setting, some form of do-
main engineering activity comes first. At very least, an instance of the product
line should be fully developed, followed by the engineering of a variant system
or two. Commonality/variability analysis should be undertaken and followed by
the incremental building of a domain feature model and database. Work is under
way developing this methodological and domain engineering work, which will be
reported elsewhere.

In this paper we introduce a prototype feature composition tool as an initial
step towards the development of a more comprehensive tooling for feature mod-
elling. For such a full Feature Modelling Tool (FMT), we will need to define a
metamodel for the feature modelling language. The FMT will consist of a fea-
ture model editor and a feature instance editor. The feature model editor will
be used to build the feature models for different product families and the fea-
ture instance editor will provide a configuration mechanism for choosing various
features to instantiate a new product line member, somewhat similar to config-
uration diagram of FeaturePlugin [10]. The feature model will also specify any
constraints needed to maintain the correct selection of features in a particular
instance. Feature composition rules will respect these constraints. The instance
editor will use the feature composition tool described in this paper to compose
selected features to build the instance system. We are planning to develop the
instance editor in such a way that it can produce an instance using the compo-
sition descriptions defined in the composition meta-language as discussed in our
earlier work [11]. This framework consists of two layers of metamodelling where
a feature model will conform to the feature metamodel and at the same time will
serve as a metamodel for the instance model. Validation criteria will be needed
to verify the correct instantiation of the metamodels at each level.

The feature has been defined as “a logical unit of behaviour specified by a set
of functional and non-functional requirements” [12]. We define the concepts of
“feature” and “sub-feature” in Event-B as atomic units of reuse, specialization
and composition. This is in order to preserve the semantics of Event-B and to

23

formally verify the product-line members. A feature is thus a small, coherent
and syntactically complete Event-B model which consists of a machine and zero
or more seen contexts. This allows a feature and its refinements to be verified
using the RODIN provers. A notion of sub-feature may be useful: when a feature
cannot be reused as a whole, we might be interested in reusing some parts of a
feature. Thus, a sub-feature is part of a feature which is syntactically incomplete
but can be reused when composed with other sub-features, e.g. in Event-B, an
event or a variable with its associated invariant(s) can constitute a sub-feature.
The following is our definition of feature and sub-feature in BNF3.

Feature ::= Context | Machine Context+

Machine ::= Name V ariable+ Invariant+ Theorem∗ [V ariant]
INITIALIZATION Init Event+

Context ::= Name {Set+ Axiom∗ Theorem∗ |
Set∗ Constant+ Axiom+ Theorem∗}

SubFeature ::= EventSF | V ariableSF | InvariantSF | ContextSF
EventSF ::= INITIALIZATION Init | Event
V ariableSF ::= V ariable+ InvariantSF
InvariantSF ::= Invariant+

TheoremSF ::= Theorem+

ContextSF ::= Set∗ | Constant∗ | Axiom∗ | Theorem∗

We start system modelling in Event-B by defining the features at an abstract
level and then refine these features gradually by adding further detail at each
refinement step. Splitting requirements across features and then modelling and
refining feature-wise, separates concerns and should reduce complexity - appli-
cation experience will tell. We call each feature and its chain of refinements a
feature development. Developing earlier work [11, 13], we regard these feature
developments as units of reuse. They will be specialized - by addition or alter-
ation of information - and composed in various ways in the process of assembling
(instantiating) an instance system in the target product line. For example, two
EventSFs are composed after specialization and conflict resolution into a single
EventSF named ‘LoadTbl’ during the composition of two Features i.e. feedbelt 2
& table 2, as shown in Fig. 1. The processes of specialization and composition
will occur in general at all refinement levels of the input feature developments.
Note that the relation between requirement feature and its implementation is
more complex than one to one and feature composition through non-linear re-
finements will layer in complex, possibly cross-cutting, structure.

3 The syntax used is: [] means optional (0 or 1), { }∗ means 0 or more occurrences,
{ }+ means 1 or more occurrences and | means OR.

24

(a) Part of Composition Metamodel (b) Example Structure

Fig. 2.

5 Feature Composition Tool

An initial version of the feature composition tool is available as a plugin to the
RODIN platform4 [5]. It provides a simple structured cut-and-paste composition
of features and guides the user in identifying and resolving any conflicts. We
are currently working on a number of composition/specialization patterns to
maximize automation while not restricting user expressiveness.

The plugin was developed in Eclipse using Java in a model-driven approach.
We built a metamodel for the composition model which inherits from the Event-
B metamodel. We then used EMF [9] to generate the code from the composi-
tion metamodel. The major advantage is in the ease of extension through the
metamodel where the code is automatically generated by EMF and then cus-
tomized. Fig. 2(a) shows part of the composition metamodel for event compo-
sition where Event, Guard and EventComposition inherit from Event-B meta-
model, i.e. BAnyEvent, BGuard and BNamedElement respectively. Event inher-
its ‘newName’ from RenameableElement which allows a new name to be given
to an Event, e.g. to resolve naming conflicts. The collection ‘sourceEvents’ repre-
sents the set of events being merged together to form a single ‘EventComposition’
which inherits ‘name’ attribute from BNamedElement. All composition elements
inherit a ‘compose’ boolean which represents the selection of that element for
composition.

The tool provides a composition editor5(Fig. 1) to select the features (in a
similar manner to existing feature modelling tools, e.g. [10]) that need to be

4 See http://sourceforge.net/projects/rodin-b-sharp/ and wiki entry at http:

//wiki.event-b.org/index.php/Feature_Composition_Plugin
5 The earlier prototype was contributed by Christopher Franklin (a University of

Southampton Intern)

25

composed resulting in the composition model. This model is then used by the
tool to transform/compose the input features into a composite Event-B feature.
The composition model is serialized in the RODIN model repository for replay-
ing the composition later. The editor provides conflict resolution functionality
and highlights any conflicts such as multiple declarations of variables or events
with the same name in different input features. It provides facilities for making
the input models disjoint before composition to automatically resolve any con-
flicting element names. It can also automatically resolve conflicting elements by
deselecting the repeating/redundant information in different models (see vari-
ables ‘position’ and ‘blanks’ on Fig. 1(a)). The editor also provides an option for
composing sub-features such as events (Fig. 1(b) shows the composition of two
events). The tool is also capable of composing features at different refinement
levels. The composite feature is a typical Event-B model and is automatically
checked by the RODIN static checker for any errors. Similarly, proof obligations
(POs) for the composite model are generated in normal fashion and the RODIN
provers discharge any POs automatically if they can. Fig. 2(b) shows the struc-
ture of our example features refined up to two levels and then composed using
the tool. The composition of features at each level needed some extra invariants,
guards and merging of events. Fig. 1(b) shows the composition of two events
into one and de-selection of redundant elements to resolve conflicts.

6 Related Work

To our knowledge, there is no tool support for feature modelling within the for-
mal methods domain, although, there are tools which support feature modelling
for product lines such as XFeature6, FeaturePlugin [10] etc. The underlying con-
cepts discussed in [14] are quite similar to what we want to achieve in the domain
of formal product line development. Another area that is closely related to our
work is the definition of composition patterns. These patterns will enable us to
write composition rules when composing Event-B features. The RODIN toolkit
is already in the phase of adopting the model transformation and code generation
facilities of EMF7.

7 Conclusion & Future Work

We have given an overview of our approach to introduce the concepts of feature
modelling within formal methods using Event-B. Our prototype feature compo-
sition tool is an initial step towards the development of a feature modelling tool
for configuring Event-B features and composing them to instantiate software
product line systems by reusing and extending existing features as mentioned in
section 4. This is required because existing feature modelling tools don’t provide

6 Feature Modelling Tool http://www.pnp-software.com/XFeature/Home.html
7 See http://wiki.event-b.org/index.php/EMF_framework_for_Event-B

26

enough facilities to give semantics to features and the resulting formal verifica-
tion capabilities such as offered by Event-B. Our prototype tool will enable us
to experiment with different case studies and to improve the tool requirements
and underlying notations for feature modelling. This remains work in progress.

The example of section 2 revealed additional tool requirements and research
questions.We will require a composition management capability to record, man-
age and replay the sequences of compositions and specializations of features
required by a target system. This should substantially increase productivity.
Another area to explore is reusing proofs. When we compose Event-B features
into a composite feature, the tool generates proof obligations (POs) for consis-
tency and refinement checking. Most of the POs for the input features still exist
for the composite feature, and may have already been discharged interactively.
Hence, it would be useful if the tool could reuse interactively discharged POs to
save user time and effort. This might be achieved through the composition of
proof trees while composing their associated features.

References

1. Abrial, J.R.: Formal methods in industry: Achievements, problems, future. In:
ICSE ’06: Proceedings of the 28th ICSE, NY, USA, ACM (2008) 761–768

2. Bowen, J.P., Hinchey, M.G.: The use of industrial-strength formal methods. In:
COMPSAC ’97, Washington, DC, USA, IEEE Computer Society (1997) 332–337

3. Metayer, C., Abrial, J.R., Voisin, L.: Event-B language. Rodin deliverable 3.2, EU
Project IST-511599 -RODIN (May 2005)

4. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

5. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: ICFEM. (2006) 588–605

6. Clements, P., Northrop, L., Northrop, L.M.: Software Product Lines : Practices
and Patterns. Addison-Wesley Professional (August 2001)

7. Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for
product line software engineering. In: ICSR-7, UK, Springer-Verlag (2002) 62–77

8. Lindner, T.: Task description. In Lewerentz, C., Lindner, T., eds.: Formal Devel-
opment of Reactive Systems. Volume 891 of LNCS., Springer (1995)

9. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. 2nd edn. The Eclipse Series. Addison-Wesley Professional (December 2008)

10. Antkiewicz, M., Czarnecki, K.: Featureplugin: Feature modeling plug-in for Eclipse.
In: Eclipse ’04: Proceedings of the 2004 OOPSLA, NY, USA, ACM (2004) 67–72

11. Poppleton, M., Fischer, B., Franklin, C., Gondal, A., Snook, C., Sorge, J.: Towards
reuse with “Feature-oriented Event-B”, Nashville, TN, In McGPLE (October 2008)

12. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach. ACM Press/Addison-Wesley, NY, USA (2000)

13. Poppleton, M.: Towards feature-oriented specification and development with
Event-B. In: Proc. REFSQ. LNCS, Trondheim, Norway, Springer (2007) 367–381

14. Cechticky, V., Pasetti, A., Rohlik, O., Schaufelberger, W.: Xml-based feature
modelling. (2004) 101–114

27

Functional Hazard Assessment in Product-Lines – A
Model-Based Approach

Ibrahim Habli, Tim Kelly, Richard Paige

Department of Computer Science, University of York, York, United Kingdom
{Ibrahim.Habli, Tim.Kelly, Richard.Paige}@cs.york.ac.uk

Abstract. A product-line can offer the reuse of complete lifecycle assets,
comprising planning, development and assessment artefacts. In safety-critical
systems engineering, safety assessment artefacts are indispensable assets which
are expensive to generate. For safety-critical product-lines, it would be cost-
effective to encapsulate these assessment artefacts as reusable assets, i.e. to
provide the capability of reusing a product-line function or component in
addition to its safety assessment artefacts. In this paper, we focus on Functional
Hazard Assessment of a product-line’s functions. We propose a product-line
functional hazard model which is integrated with the product-line context and
domain models. We also show how this proposed product-line functional
hazard model fits within the product-line processes.

Keywords: Product-lines, model-driven development, safety-critical systems,
functional hazard assessment

1 Introduction

Reuse is a recognised approach to reducing the development cost of software-
intensive systems. Instead of analysing, designing, implementing and verifying a
function or a component from scratch every time, it would be more cost-effective to
develop it once and reuse it in multiple systems. Specifically, reuse could be more
cost-effective if it is managed according to predefined contextual and architectural
constraints such as in product-line development. Product-line development is an
approach to large-scale and holistic reuse. A product-line can offer the reuse of
complete lifecycle artefacts comprising planning, development and assessment
artefacts. In safety-critical product-lines, safety assessment artefacts generated from
Functional Hazard Assessment (FHA), Fault Tree Analysis (FTA) and Failure Mode
and Effect Analysis (FMEA) [1] produce the main evidence supporting claims that
the system is acceptably safe to operate within a specific environment. These safety
assessment artefacts are indispensable assets which are expensive to generate. To this
end, it would be advantageous to encapsulate these artefacts as reusable product-line
assets, i.e. to provide the capability of reusing a product-line function or component in
addition to its safety assessment artefacts (e.g. its failure mode assessment data).
However, to be able to reuse safety assessment artefacts in a trustworthy manner, the
relationship between a reusable function or component and its associated safety

28

assessment artefacts should be explicitly and unambiguously modelled. In other
words, it is not enough to emphasise the importance of the process by which the
safety assessment information is generated, but also the importance of the model
against which the structures, relationships and assumptions underlying the generated
assessment information are captured. The safety assessment process is carried out
once whereas the generated assessment information, identified and specified against
the model, is reused multiple times. In this paper, we focus on Functional Hazard
Assessment of a product-line’s functions. We propose a product-line functional
hazard model that is integrated with the product-line context and domain models. We
also show how this proposed product-line functional hazard model fits within the
product-line processes.

This paper is structured as follows. Section 2 presents a brief introduction of FHA,
followed by an overview of the modelling approach proposed in this paper (Section
3). Section 4 proposes a product-line functional hazard model and how it interfaces
with product-line context and domain models. Section 5 shows how the proposed
product-line functional hazard model fits within the product-line’s domain and
derivation processes. The paper concludes with a summary in Section 6.

2 Functional Hazard Assessment

Functional hazard assessment (FHA) is an inductive technique which examines the
way in which system functions contribute to system safety [1]. FHA identifies failure
conditions associated with system functions and the effects these failure conditions
can have on overall safety. Failure conditions are typically identified by considering
three hypothetical deviations: (1) function not provided, (2) function provided when
not required and (3) function provided incorrectly. The effects of each failure
condition are then identified, specifically those affecting the intended behaviours of
the system, its environment and users. FHA then classifies each function based on the
severity of the effects of the function’s failure conditions. Failure conditions leading
to deaths or injuries are typically classified as ‘Catastrophic’ or ‘Hazardous’. Less
severe failure conditions are typically classified as ‘Major’ or ‘Minor’. Finally, system
safety requirements are defined, addressing each failure condition in accordance with
the severity of its classification (i.e. rigour in specifying and meeting the safety
requirements of a function is proportionate to the criticality of the function).

3 Approach Overview

System safety aspects and the way in which they are identified and assessed cannot be
considered in isolation from the system’s context, functions and dependencies. This is
mainly because safety is a consequential attribute; i.e. safety conditions such as
hazards, failure conditions and failure modes are an outcome of certain system
functionalities and behaviours in a given environment. This is why system hazards are
typically identified given the safety analysts’ understanding of the system functions
and their environment. For example, safety conditions are stated given certain

29

assumptions about data sampling rate, level of independence, expected operation
modes, maintenance procedures and end-user training. In this paper, we focus on one
particular class of safety conditions: Functional Hazards. Functional hazards are
functional failure conditions with hazardous consequences, e.g. loss of braking
capability or inadvertent engine thrust control. These failure conditions cannot be
identified and analysed without a sufficient understanding of the system functions and
the way in which they interact with one another and with their environment.
Specifically, in a product-line, functions are typically captured in the domain model
as high-level features. The product-line environment, on the other hand, is defined in
the context model. As such, any product-line functional hazard model should interface
with the product-line context and domain models.

Fig. 1. Overall Structure of the Product-Line Models

An overview of the interrelationships between the functional hazard, context and
domain models is depicted in Figure 1 (a more detailed description of these models is
presented in the next section). The context model captures information regarding the
structure of the physical, operating, support, maintenance and regulatory environment
of the product-line systems. Broadly speaking, the context model defines external
constraints that these systems need to respect. Without a clear definition of these,
implicit contracts and dependencies between these systems and their support
environment could be violated, leading to uncertainties regarding the assumed safe
behaviours of the systems. The domain model, on the other hand, considers the
structures of, and interactions between, features provided by systems in a domain. A
feature is a set of related capabilities and characteristics that represent a logical unit of
functionality for the stakeholders of the product [2] [3]. Features in a domain model
have explicit associations with one another and with environmental factors (e.g.
particular functions deployed only during certain operational phases). Finally, the
functional hazard model captures failure conditions, effects, severity classification
and safety requirements which relate to specific functional and environmental
configurations, as defined in the context and domain models.

One special characteristic of product-line development is variation management.
The product-line context and domain models capture how products, derived from the
product-line’s assets, are permitted to vary from one another. These products vary in
terms of the functions they provide or the environment in which they can be deployed.
Because of the interdependency between the product-line’s functions, environment
and functional hazards, functional hazards are not immune from the impact of
functional and contextual variation. The nature and severity of functional hazards
assumed to be associated with a certain reusable function may change due to certain
permitted configurations of the variation points defined for that function.

30

Uncertainties in the traceability between a function and the hazards that may be posed
by that function, due to certain product-line variations, are dangerous and
unacceptable in the safety domain. Seemingly simple variations in the original and
new deployment of reusable functions may contribute to the occurrence of hazards or
failure modes previously assumed to be irrelevant to the system [5].

To this end, the management of variations and the way in which they affect safety,
however minor, is a prerequisite for trusted reuse. We believe that the impact of
variation on safety can be identified, traced and controlled by integrating the product-
line functional hazard model with the context and domain models. By adopting a
model-based approach to managing the safety impact of product-line variation,
product-line functions, along with their associated functional hazard information, can
be reused with greater confidence and without the need for the reassessment of these
functions whenever reused in the derivation of new products.

Fig. 2. Example Generic Variability Metamodel [5]

Many models for describing variability have been proposed in the product-line
literature [5] [6] [7] [8] [9] [10]. In essence, a variability metamodel comprises
variability points (figure 2). Variability points specify places in an artefact where
variability can arise [11]. Variability points are bound by engineers to create concrete
variants of variable artefacts or attributes. Variability points are often interdependent
in that the binding of one variability point may restrict the binding of other variability
points. For example, for safety, a choice of relevant operation modes and their
criticality in a context model may dictate the binding of certain variability points
regarding the level of partitioning in the design model. This in turn may have impact
on how the bound design artefact could contribute to system hazards identified in the
safety models. In this report, we do not prescribe a specific structure for the
variability metamodels. The context, domain and functional hazard models defined in
the next section are generic and can easily be interfaced with variability models which
comprise, as a minimum, explicit variability points and the resulting variants.

4 Product-Line Functional Hazard Model

In this section, we propose a functional hazard model for product-line development.
This model defines the relationships between, on the one hand, product-line

31

functional and environmental variants and, on the other hand, their corresponding
failure conditions, effects, classifications and safety requirements.

a
s

s
o

c
ia

te
d

w
ith

Fig. 3. Product-Line Functional Hazard Model

The product-line functional hazard model is depicted in Figure 3 (please note that, for
presentation purposes, the depicted model is an abstraction of the original model
which is created in the form of an Ecore model [12]). In the model in Figure 3, a
‘failure condition’, which is a subtype of a ‘condition’ and associated with a
‘functional variant’, can lead to one or more ‘effects’ (an effect is also a subtype of a
‘condition’). Each effect is associated with a ‘classification’ based on the severity of
this effect from the safety perspective. It is important to note that the two elements
‘Functional Variant’ and ‘Contextual Variant’ are the main source of the variation.
The ‘failure condition’, ‘effect’, ‘classification’ and ‘safety requirement’ model
elements can also vary, though in a subsequential manner. That is, variation in failure
conditions, effects, classifications and safety requirements, within the scope of the
FHA, is not indigenous and is a consequent of the variation in functional
specifications and the environment (e.g. operation phase, temperature and behaviour
of other internal and external functions). A failure condition occurs and leads to
certain effects due to, and in the context of, a certain configuration of functional
variants and contextual variants. When this configuration varies, the failure condition
and its associated effects may also vary. Similarly, the classification of the same
failure condition effect in a product-line may vary. For example, in-flight engine
shutdown may be classified as ‘Minor’ for one aircraft whereas classified as
‘Hazardous’ for another. This depends on the various ways in which the aircraft and
engine product-lines are configured (e.g. variation in the number of engines fitted). In

32

particular, the impact of variation in functions and external conditions is captured in
Figure 3 in the following association classes:

Failure Condition and Effect Association Class: The relationship between a failure
condition and its effects is governed by specific conditions which are associated with
certain configurations of functional and contextual variants. These configurations may
vary, and as a result, the causal relationship between failure conditions and effects
may vary accordingly. For example, the same failure condition of a function may lead
to different effects in a product-line FHA depending on the various permitted
configurations of this function within certain environments.
Effect and Classification Association Class: A failure condition in a product-line
FHA may lead to one or more effects. However, once an effect occurs, its
classification may depend on functional and contextual variants other than those
affecting the occurrence of the failure condition(s). Therefore, it is important to
explicitly capture separately the functional and contextual variants that affect
classification.
Safety Requirement Association Class: Derived safety requirements are one of the
outputs of an FHA – “Assignment of requirements to the failure conditions to be
considered at the lower level” [1]. Safety requirements are not only associated with
failure conditions, but also with the classification of these failure conditions. Safety
requirements for the same failure condition in a product-line can differ when the
failure condition has more than one classification – i.e. due to permitted variation that
can affect classification. To this end, a safety requirement in the FHA model in Figure
3 is linked with the association that relates a failure condition to its effect. Similarly, a
safety requirement in the FHA model is linked with the association that relates the
effects of a failure condition to its classification. In this way, we can ensure that the
integrity and rigour associated with defining and meeting the safety requirement is
proportionate to the classification of the failure condition addressed by that safety
requirement. In short, variation in safety requirements is a function of variation in (1)
the association leading to failure conditions and (2) the association influencing the
classification of these failure conditions.

5 Product-Line Functional Hazard Assessment Process

In this section, we present an approach to integrating FHA into the product-line’s
domain engineering and application engineering phases. The role of the FHA in the
domain engineering phase is to examine the failure conditions associated with each
variant of a function addressed in the feature model by producing the function’s
effects, classification and associated safety requirements. These product-line failure
conditions, effects, classifications and safety requirements are captured against the
product-line functional hazard model defined in the previous section. This enables
functional hazard data to be reused whenever a function in the feature model is
selected in the derivation of a new product as part of the product-line. As shown in
Figure 4, the FHA is the first safety assessment method applied in the product-line
domain engineering phase and is highly associated with the product-line domain and

33

context analysis. The relationship between the FHA activity and the context and
domain modelling activity is bidirectional. When a function is captured as a feature in
the feature model, and its environment defined in the context model, each variant of
the function, given its specified context, is examined in the FHA to determine its
failure conditions, effects, classifications and safety requirements.

Product-Line Development Process

Product-Line Safety Process

Context and
Domain

Modelling

Architecture
Modelling

Component
Development

Context Model Feature Model
Reference

Architecture
Model

Reusable
Components

FHA
Architectural

Failure
Assessment

Component
Failure

Assessment

FHA Model

Architecture
Failure

Assessment
Model

Component
Failure

Assessment Data

Functional
variants

Environment
variants

Failure conditions
Effects

Classification
Safety requirements

Derived
Architectural
Configuration

Failure Mode chains
Derived Safety
requirements

Component
variants

Failure Modes
Effects

Mitigation

Fig. 4. FHA in the Product-Line Domain Engineering Phase

The FHA results also play a role in constraining certain configurations of features or
contextual assumptions which may pose unacceptable safety conditions. For example,
the functional hazard data may show that the severity of certain failure condition
effects of a function (represented as a feature) are unacceptable within the agreed
scope of a product-line and may therefore result in imposing constraints on the
selection of that function (e.g. it may be within the scope of the product-line to
address hazardous but not catastrophic events). Furthermore, as part of defining the
functional variants of the product-line’s feature model, decisions and assumptions can
be made regarding independence between the product-line’s functions (e.g. to avoid
common mode failures). Decisions and assumptions concerning independence,
affecting safety, should be explicitly captured and managed as part of the product-line
FHA. In the product-line feature model, constraints should be established, based on
the product-line FHA results, that restrict feature compositions that can violate
assumed independence between functions, e.g. independence between functions and
their monitors.

In the product-line’s application engineering phase, the functional hazards posed
by each function, reused in the derivation of a new product, should be identified and
analysed. However, this analysis is not carried out from scratch. Each product
function, along with its associated contextual conditions, are fed into the product
FHA activity, which in turn checks for potential matches with functional and
contextual variants whose failure conditions have been previously captured in the
product-line functional hazard model. Whenever there is a match, relevant failure
condition data should be added to the product functional hazard model and linked
with the product’s requirements and contextual conditions. In the case of mismatches,

34

the safety analysts need to examine the sources of these mismatches. For example,
mismatches can due to product-specific functions or product-specific contextual
assumptions. Safety analysts should analyse these new functions or contextual
assumptions and generate their corresponding failure conditions, effects,
classifications and safety requirements. These failure conditions, effects,
classifications and safety requirements should not only be added to the product FHA
model, but should also be added to the product-line FHA model and therefore should
be available for reuse, where relevant, in the analysis of future products.

6 Summary

We have proposed a product-line functional hazard model, which is integrated with
the product-line context and domain models. We have also proposed a way in which
this functional hazard model fits within the product-line processes. We are currently
validating the functional hazard model against a number of safety assessment
processes as defined in some aerospace and automotive standards. We are also
working on a generic safety assessment metamodel for product-lines which could be
integrated with a product-line’s context, domain and reference architecture models.

References

1. Society of Automotive Engineers (SAE): ARP 4761: Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, SAE
400 Commonwealth Drive, USA (1994)

2. Bosch, J.: Design and Use of Industrial Software Architectures, Addison Wesley (2000)
3. Clements, P., Northrop, L.: Software Product Lines, Practices and Patterns, Addison Wesley

(2002)
4. Redmill, F.: Safety integrity levels – theory and problems, lessons in system safety.

Proceedings of the Eighth Safety-Critical Systems Symposium, 1-20 Redmill F and
Anderson A (eds), Southampton, UK, Springer Verlag (2000)

5. Bachmann, F., Goedicke, M., Sampaio do Prado Leite, Nord, R., Pohl, K., Ramesh, B.,
Vilbig, A.: A Meta-model for Representing Variability in Product Family Development.
Software Product-Family Engineering, 5th International Workshop (2003)

6. Thiel, S., Hein, A.: Systematic Integration of Variability into Product-line Architecture
Design, Proceedings of the 2nd International Conference on Software Product-lines, (2002)

7. Gomaa, H.: Designing Software Product-lines with UML. Addison Wesley (2005)
8. Kang K., Cohen, S., Hess, J., Novak, W.: A. Peterson, Feature-Oriented Domain Analysis

(FODA) Feasibility Study. (CMU/SEI-90-TR-021), SEI (1990)
9. Becker, M., Towards a General Model of Variability in Product Families, Proceedings of the

1st Workshop on Software Variability Management, Groningen, Netherlands (2003)
10. Weiss, D. M., Chi Tau Robert Lai: Software Product-Line Engineering: A Family-Based

Software Development Process, Addison-Wesley Professional (1999)
11. Jacobson, I., Griss, M., Patrik, J.: Software Reuse: Architecture, Process, and Organisation

for Business Success, Addison-Wesley-Longman (1997)
12. Eclipse, Eclipse Modelling Framework Project (EMF), EMF Core,

http://www.eclipse.org/modeling/emf/?project=emf

35

Flexible Service Speci�cation and Matching

Based on Feature Models

Muhammad Naeem and Reiko Heckel

University of Leicester fmn105, reikog@mcs.le.ac.uk

Abstract. We propose to use variability techniques from the realm of
product lines to help make service speci�cations more exible. Feature di-
agrams provide a high-level model of the essential and optional aspects of
services in combination with detailed models of service's semantics based
on visual contracts speci�ed by graph transformation rules. In this way
we hope to provide a precise, yet exible speci�cation of requirements
towards as well as provided services, which is amenable to automation
while being visual and user-friendly.

1 Introduction

The use of the web as a platform for application integration provides the tech-
nology to react to today's rapidly changing business climate [1]. However, while
technically web services can be discovered, selected and bound to at runtime [2],
the necessary automation of these tasks continues to pose major challenges. One
of them is the level of exibility required to �nd a service satisfying the speci�ed
requirements. Human programmers, if they cannot �nd exactly what they asked
for, will be happy enough to adapt their demands to a su�ciently similar service
and change their implementation accordingly. But any automated selection and
binding requires a detailed speci�cation not just of the signatures and data types
of the services required but also of their actions and protocols. Such a detailed
description will, however, be less likely to be matched by any existing service.

Let us consider a scenario where a requester (potential client) �nds a service
satisfying most of the requirements. For example, while requesting a service for
hotel and ight reservation, requester may also be interested in transport from
the airport to the hotel, a guide to visit holy or historical places, while having a
preference to pay via bank transfer. The provider may o�er to book ight, hotel
and transport, and allow payment via bank transfer or credit card. Comparing
our requirements with the o�er we �nd a mismatch in the fact that no guide
services are provided. To resolve this mismatch we need information about the
relevance of the missing feature, e.g., whether it is optional or compulsory for
the success of our application. In addition, there will be dependencies between
features as well as with other elements of our models.

In this paper we are proposing to combine visual techniques for the modelling
of product lines, speci�cally feature models [3{5], with a modelling approach
using visual contracts (graphical pre- and post conditions for operations [8, 9]) for

36

Flexible Service Speci�cation and Matching Based on Feature Models

specifying and matching service descriptions as produced by the service provider
against requirements as expressed by the requester. The approach is based on
an easy integration with mainstream software UML notations, provides the level
of formality and exibility required to realistically allow automated matching of
services, and supports the adaptation of provider and requester interfaces and
implementations to the chosen variant.

The remainder of the paper is organised as follows: Section 2 discusses some
related work, Section 3 introduces the speci�cation and matching of services by
visual contracts using a small case study. Section 4 extends this approach by
feature models and Section 5 describes the matching and adaptation of these
extended models. Section 6 concludes the paper.

2 Related Work

A number of approaches address exible matching of services with semantic de-
scriptions. Paolucci et al. in [11] have described an engine that allows matching of
advertisements and requests on the bases of the capabilities. Several matchmak-
ing frameworks are developed in [12{16], which operate on service descriptions
written in RDF, DAML+OIL or DAML-S. Wu in [17] proposes a similarity-
based approach, which grounds the matching process on a comparison of sig-
nature speci�cations in WSDL, but not on semantic descriptions. Matchmaking
approaches ranking the similarity between advertisement and request are devel-
oped in [18] and [19]. In [20], Yongley adopted the ranking technique to service
matching based on semantic descriptions.

We believe that variability needs to be built into the service speci�cation,
so that automated decisions can be made in the case of imperfect matches.
This is di�erent from ranking matches according to their degree of similarity.
Moreover, our approach, while being inspired by standard methods for specifying
and matching service semantics, does so on the basis of a visual notations which
allows integration into mainstream software modelling languages.

3 Specifying and Matching of Services

In this section we describe the basic approach to visual semantic modelling and
matching of services by means of a case study of an online travel agent. We use
graph transformation rules to represent visual contracts.

Graph Transformation Systems (GTS) provide a modelling language where
graphs model (data) states and rules specify state changing operations. The class
of admissible states is speci�ed by a type graph [9]. Fig. 1 shows a possible state
graph of the case study where bookings have been generated by a client for hotel,
ight, and transport. The types of nodes and their associations are represented
by the type graph in the left of Fig. 1.

In the context of semantic web services we can think of the type graph as
a representation of an ontology and of the instance graph as a data con�rming

37

Flexible Service Speci�cation and Matching Based on Feature Models

to it. Transformations of instance graphs are due to the application of graph
transformation rules, shown in Fig. 2.

Fig. 1. Type and instance graphs

Service models are given in two version: from the requester's point of view
describing desired functionality and from the provider's perspective specifying
the services that are actually implemented.

The rule in the top part of Fig. 2 represents the requirements of a requester
who is looking to reserve guide services and is willing to pay by credit card. The
left side of the rule shows the preconditions of the operation while the right-hand
side shows its postcondition / e�ect [9]. The rule expresses the demand for an
operation which allows a client to book a guide payed for by a credit card owned
by the client. Similar operations could be requested for the booking of hotel,
ight, and transport, or to allow payment via bank transfer.

A rule describing the operation as implemented by the provider is in the
bottom of Fig. 2. It o�ers to book any service using any available payment
method.

It should be clear that, in this case the requirements of the requester are
satis�ed by the operations as speci�ed by the provider because of the subtyping
relation betweenMeansOfPayment and CreditCard as well as Service and Guide.
These relations are captured in the ontology that both rules are based on, and
which we assume to be standardised.

However, while we clearly have to rely on such standardisation to allow
matching of services at all, we would like to have the possibility for example

38

Flexible Service Speci�cation and Matching Based on Feature Models

Fig. 2. Visual contracts specifying booking operations from requester (top) and
provider (bottom) point of view

to specify a provider that does not o�er guide services. We could do so at a
moment by replacing the generic rule shown in the bottom of Fig. 2 by a num-
ber of more speci�c ones for booking hotel, transport and ight. In this case,
the requester's requirement would not be satis�ed by this service. In the next
sections we will introduce a more economical way of representing this and other
provider models based on features. We will also have to extend our notion.

Formally, a (provider) rule satis�es another (requester) rule if the precondi-
tions of the �rst entail the preconditions of the second and the postconditions /
e�ects of the second entail those of the �rst. Entailment in this case boils down to
subgraph matching, allowing for the specialisation of types, i.e., the right-hand
side of the provider rule entails the right-hand side of the requester rule because
the former is a supergraph of the latter with more general types.

4 Visual Contracts with Features

In order to allow for a more �ne-grained speci�cation of the functionality on
o�er as well the desired exibility in the matching of provisions to requests,
we propose to use feature models. A feature is \a distinguishable characteristic
of a concept that is relevant to some stakeholders" [4] while feature diagrams
can be used to show the variability of features in a hierarchical form, including
di�erent types of features (such as optional, mandatory, alternative, etc.) and
their interdependencies [3{7]. A feature model consists of a feature diagram and

39

Flexible Service Speci�cation and Matching Based on Feature Models

other associated information, in our case given by the type graph (ontology) and
visual rules (visual contracts) of requester and provider models.

Semantically, a feature diagram describes a set of instances, each representing
a permissable subset of features. By taking the intersection between the sets of
subsets on the requester and provider side we can identify the feature sets agree-
able to both parties. Each such set describes a particular selection of features
which can be used to derive a corresponding variant of the underlying service
models.

Feature diagrams for requester and provider are shown in Fig. 3(a), 3(b).
For example, the requester diagram declares Transport and Guide as optional
features whereas Hotel and Flight Reservation and Payment by Bank Transfer as
mandatory features. We have used System for the concept node of both requester
and provider feature trees for ease in comparison.

(a) Requester (b) Provider

Fig. 3. Feature Diagrams of Requester and Provider

The connection between feature diagrams and visual contract models is pro-
vided by labelling the model elements (node types, rules, etc.) by the features
they are part of. This is shown for our example in the type graph in Fig. 4 by
small gray boxes with dashed borders placed at the corners of classes. Semanti-
cally, this means that since the Guide is not available as a feature of the provider
(as seen from the provider's feature diagram), the corresponding class in the type
graph is projected from the provider's view. In this way, the provider's booking
rule in Fig. 2 describing the booking for all services does not promise subsume
the booking of Guide services. For brevity we have used underlined characters
of feature names (from Fig. 3) as labels in Fig. 4.

Similarly, operations and their visual contracts are labelled, e.g., rule Req

:: bookGuideByCC would be labelled Guide and CC while Prov :: bookService

would carry all labels except for Guide.

5 Matchmaking and Adaptation

In order to �nd out if a provider description matches the requirements expressed
by a requester model, we proceed in three steps.

40

Flexible Service Speci�cation and Matching Based on Feature Models

MeansOfPayment Client

Booking

Service

Receipt

Bank

Transfer

Credit

Card

Flight HotelGuide Transport

BT

Gd F TraH

CC

owns

made

for

paid

of

Fig. 4. Type Graph labelled by features: BT for Bank Transfer, CC for Credit Card,
Gd for Guide, F for Flight, H for Hotel, Tra for Transport

1. Compute intersection of feature sets of requester and provider feature dia-
grams.

2. For each feature set in the intersection, derive the corresponding variant of
provider and requester model.

3. Check compatibility of each derived pair of models.

For Step 1, feature trees can be converted into propositional formulas [3, 6, 7].
The set of solutions of the conjunction of the propositional formulas derived from
the two feature models provides us with the desired intersection, i.e., the set of
all subsets of features that are admissible according to both models. The result
can be visualised as a feature diagram again, such as in Fig. 5 representing the
intersection of feature diagrams of Fig. 3(a), 3(b). The largest admissible features
set is fSys;Res; F;H; Tra; Pay;BTg, but also fSys;Res; F;H; Pay;BTg is in
the intersection.

Fig. 5. Intersection of feature diagrams of Figures 3(a), 3(b)

41

Flexible Service Speci�cation and Matching Based on Feature Models

In order to de�ne the variant of requester and provider models in Step 2,
we have to delete from these models all elements labelled by features not in the
relevant feature set, and then recursively all the elements dependent on those
deleted. For example, deleting the Guide class results in deleting the correspond-
ing subtyping relation as well as all the operations and rules containing instances
of this class. They are therefore disregarded in the next step. Further, if a sub-
class is removed from a superclass which occurs in a rule, this rule is removed
as well and replaced by all its specialisations where the superclass is replaced by
all permissable subclasses. In this way, from rule Prov :: bookService in Fig. 2
we obtain three specialisations, one of which (for Service! Transport) is shown
in Fig. 6 together with the variant of the type graph.

Fig. 6. Variant of type graph and rule

Since as a result of Step 2 we will obtain a pair of ordinary models (without
features) for each subset of features selected in Step 1, we can apply the standard
notion of matching as explained in Section 3 to check that they are indeed
compatible.

Thus, there could be two reasons for a requirement not to be matched by
a service description: An empty intersection of their feature diagrams (e.g., if a
mandatory feature of the requester is not provided), or an incompatibility in the
semantics of the actual operations. For the latter, consider a rule like the one in
Fig. 2 but without the links between c:Client and cc:CreditCard in the left- and
right-hand sides. In this case, the client would try to pay with a credit card not

42

Flexible Service Speci�cation and Matching Based on Feature Models

owned by the person who has made the booking, which would contradict the
requirement of the provider rule.

Notice that we take for granted here the fact that all models are speci�ed
over a shared ontology. Thus rules use the same classes for the same concepts
and naming of features is consistent.

6 Conclusion

We proposed an extension by feature models of a visual approach to semantic web
services based on graph transformation. As feature models can be rephrased in
terms of propositional logic and visual contracts map to simple description logics,
the entire approach could be handled in a purely logical framework. However, we
believe that the visual presentation of models is as important for their usability
as the explanation of the matching procedure at the same level.

Future work will focus on evaluating the approach, developing tool support,
and extending it towards prioritising of features to be able to rank di�erent
feature sets for their level of satisfaction before going on to check the consistency
of the semantic descriptions.

References

1. Leymann, F.: Choreography for the Grid: Towards Fitting BPEL to the Resource
Framework. Journal of Concurrency and Computation: Practice and Experience. 17
(2005).

2. Papazoglou, P.: Service-Oriented Computing: Concepts, Characteristics and Direc-
tions. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering. IEEE Computer Society Washington, DC, USA. (2003) 3{12

3. Czarnecki, K., Eisenecker, U.: Generative Programming - Methods, Tools, and Ap-
plications. Addison-Wesley, Boston, MA. (2000)

4. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213. (1990)

5. Kang, K., Kima, S., Lee, J., Kim, K., Shin E., Huh, M.: FORM: A Feature-Oriented
Reuse Method with Domain-Speci�c Reference Architectures. Annals of Software
Engineering. 5 (1998) 143{168

6. Batory D.: Feature Models, Grammars, and Propositional Formulas. In Proceedings
of Software Product Lines Conference 2005. Springer Berlin/Heidelberg. LNCS 3714

(2005) 7{20
7. Jong, M., Visser, J.: Grammars as Feature Diagrams. In Proceedings of ICSR7
Workshop on Generative Programming. (2002) 23{24

8. Hausmann, J., Heckel, R., Lohmann, M.: Model-based Development of Web Service
Descriptions: Enabling a Precise Matching Concept. International Journal of Web
Services Research. 2 (2005) 67{84

9. Engels G., Heckel, R.: Graph Transformation as a Conceptual and Formal Frame-
work for System Modelling and Model Evolution. In Proceedings of the 27th
International Colloquium on Automata, Languages and Programming. Springer
Berlin/Heidelberg. LNCS 1853 (2000) 127{150

43

Flexible Service Speci�cation and Matching Based on Feature Models

10. Simos, M., Creps, R., Klingler, C., Lavine, L., UNISYS DEFENSE SYSTEMS
RESTON VA: Software Technology for Adaptable Reliable System (STARS) Or-
ganization Domain Modeling (ODM) Guidebook. Technical Report STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems, Manassas, VA. 2 (1996)

11. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web
Services Capabilities. In Proceedings of the 1st International Semantic Web Confer-
ence. LNCS 2342 (2002) 333{348

12. Chiat, L., Huang, L., Xie, J.: Matchmaking for Semantic Web Services. In Proceed-
ings of IEEE International Conference on Services Computing. IEEE SCC. (2004)
455{458

13. Trastour, D., Bartolini, C., Priest, C.: Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. In Proceedings of Eleventh Conference on World
Wide Web. ACM New York, NY, USA. (2002) 89{98

14. Gonzales-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Matchmak-
ing of Services. Proceedings of the KI-2001 Workshop on Applications of Description
Logics, Aachen: CEUR Workshop Proceedings. 44 (2001) 89{126

15. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proceedings of the Twelfth International Conference on World
Wide Web. ACM New York, NY, USA. (2003) 331{339

16. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web
Services Capabilities. In Proceedings of the 1st International Semantic Web Confer-
ence. Springer-Verlag London, UK. LNCS 2342 (2002) 334{347

17. Wu, J., Wu, Z.: Similarity-based Web Service Matchmaking. In Proceedings IEEE
International Conference on Services Computing. IEEE Computer Society Washing-
ton, DC, USA. SCC 1 (2005) 287{294

18. Noia, T., Sciascio, E., Donini, F., Mongiello, M.: A System for Principled Match-
making in an Electronic Marketplace. In Proceedings of the Twelfth International
Conference on World Wide Web. ACM New York, NY, USA. (2003) 321{330

19. Jaeger, M., Tang, S.: Ranked Matching for Service Descriptions using DAML-S. In
Proceedings of the Open InterOp Workshop on Enterprise Modelling and Ontologies
for Interoperability Co-located with CaiSE'04 Conference. (2004) 217{228

20. Yao, Y., Su, S., Yang, F.: Service Matching Based on Semantic Descriptions. In
Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services. IEEE Com-
puter Society Washington, DC, USA. (2006) 126{131

44

Is Model Variability Enough?

Salvador Trujillo, Ander Zubizarreta, Josune De Sosa, Xabier Mendialdua

IKERLAN Research Centre, Spain
{strujillo, ander.zubizarreta, jdesosa, xmendialdua}@ikerlan.es

Abstract. Done well, the combined use of Model Driven Development
(MDD) and Software Product Lines (SPL) o�ers a promising paradigm
for software engineering. Such combination of abstraction from MDD
and variability from SPL is particularly powerful in the �eld of software-
intensive systems. Although this �eld has �ourished recently, the focus so
far has been mostly on how to cope with the variability of models. This
focus on model variability has limited however the extension of variability
to other artifacts apart from models such as metamodels and model
transformations, that may cope with variability too. This position paper
discusses whether model variability is enough for realizing the Model-
Driven Product-Line dream. We shift our attention from the variability
of models to a more general situation where the variability may embrace
models, metamodels and model transformations.

Introduction

Modeling is essential to cope with the increasing complexity of current software
systems. Models assist developers during the entire development life cycle to pre-
cisely capture and represent relevant aspects of a system from a given perspective
and at an appropriate level of abstraction.

MDD is a paradigm to automate the generation of boiler-plate code. Rais-
ing the abstraction level enables to focus on the domain details and separate the
implementation details. This brings a number of speci�c bene�ts such as produc-
tivity, reduced cost, portability, drops in time-to-market, and improved quality.
Overall, the main economic driver is the productivity gain achieved, which is
reported by some studies [11,16].

A key artifact in MDD is a model transformation that de�nes the mappings
between a model and other model or between a model and a code artifact.
Although MDD was initially aimed at the generation of an individual program,
shortly after appeared the need for families of programs.

Researchers and practitioners have realized the necessity for modeling vari-
ability of software systems where software product line engineering poses major
challenges [20]. A software product line is a set of software intensive systems that
are tailored to a speci�c domain or market segment and that share a common
set of features [3,17].

For example, in industrial software systems the presence of di�erent types
of subsystems (e.g., exclusive subsystems from di�erent providers) implies that

45

each is controlled in a similar though di�erent way. This is typically achieved
by de�ning two features that are not necessarily present in all possible systems.
A feature is an end-user visible behavior of a software systems, and features are
used to distinguish di�erent software systems or variants of a software product
line [13].

This impacts not only on the implementation, but on the modeling level.
The modeling used in software product lines can be twofold. First, there are
approaches for describing the variability of a software product line, e.g, there are
feature models that specify which feature combinations produce valid variants
[13]. Second, all variants in the product line may have models that describe their
structure, behavior, etc.

However, when dealing with variability in an MDD scenario, there are fur-
ther artifacts apart from models that may need to cope with such variability
(e.g. model transformations may have to cope with variability imposed by the
software product line). Hence, this paper takes a step back to study such impact
into a broader perspective by analyzing the scenarios for Model-Driven Product
lines. We shift our attention from the variability of models to a more general
situation where the variability may embrace models, metamodels and model
transformations. Hence, a realization of one feature may consist of variations of
such artifacts.

Our contribution is to elaborate on motivating scenarios where model vari-
ability is not enough, illustrating this with a simple example and pointing to the
need for extending variability beyond models.

Motivating Scenario

There are di�erent scenarios when combining MDD and SPL, with di�erences
depending on the modeling language used. It is not the same to use UML or to
work with Domain Speci�c Languages (DSL).

The motivating scenario where model variability shows enough may happen
in situations where:

1. The used metamodel is standard and so it is not subject to variability. For
instance, when using a UML class diagram, it seems hard to make its meta-
model variable since it is somehow standardized. This may apply generally
to the metamodels of the UML.

2. The model transformations come from a common library of model transfor-
mations that are shared. For instance, consider the dozens of model transfor-
mations expressed in ATL (Atlas Transformation Language) that are avail-
able online1.

Therefore, in scenarios with standard metamodels and shared transformations,
the use of model variability seems enough. Indeed, at this point we wondered:
what if not? Some motivating scenarios where model variability does not seem
enough follows.

1 http://www.eclipse.org/m2m/atl/atlTransformations/

46

1. There are di�erent target models and model transformations may need to be
customized for di�erent targets. Model transformations share a signi�cant
common part while di�er in some variable parts. For instance, consider the
case where di�erent implementation code is generated from the same source
model. The target code is expected to be executed in di�erent operating sys-
tems that could be de�ned well as features. Hence, there is a large proportion
of shared code and some particularities bound to each operative system. In
this situation, the application of variability to model transformations may
enable to handle those di�erences in a unique model transformation.

2. In the previous situation, the source model conforms to a single metamodel
while the target conforms to di�erent metamodels. Depending on the pro-
portion between common and variable parts of such metamodels, it may be
of interest to apply variability as well to those metamodels. For instance, in
the earlier example, the code for each operative system may conform to a
speci�c metamodel. Although di�erent, it may share a signi�cant common
part and so handling the metamodel variability may be required.

3. Model transformations de�ne mappings between source and target meta-
models. The variability in the target metamodel may happen as well in the
source model. In general, it could be restricted to either the source, the tar-
get or both. Ultimately, since model transformations are chained, this need
may propagate along the chain of model transformations.

Next, we illustrate this motivating scenario with a simplistic example.

Example

Although the motivating scenario is realistically more likely to occur within a
larger system, we illustrate our ideas with a family of academic applications for
managing libraries developed following MDD. Our motivating scenario demands
to cope with the variability of models, metamodels and model transformations.

Consider a model of an academic application for managing libraries. An ex-
ample library called myLibraryModel having many Books with their attributes
Title, Author, and Category. The structure to which the model conforms is de-
�ned by a metamodel called myAcademicMetaModel. There is a family of library
applications where the SPL paradigm is used.

The focus shifts from the development of an individual program to the devel-
opment of reusable assets that are reused across the family. Consider a feature
that extends myLibraryModel with magazines in addition to books. Each maga-
zine will have a reference number, a title and the number of the issue. This may
require the introduction of some variability to myLibraryModel. Books can also
have other features apart from those already presented (e.g. including the year
of publication, the publisher, or a small abstract of the book).

When composing features to get a product out of the product family, it
might happen that the resulting composed model does not conform to the
myAcademicMetaModel introduced earlier. Such metamodel may need to be re-

47

�ned together with the model. Similarly, this may apply to the model transfor-
mations.

In general, di�erent library products can be created, each one with the se-
lected features. Adding features implies that the model, metamodel and model
transformations may need to be re�ned to deal with variability.

Variability Beyond Models

Extending variability beyond models may initially impact on metamodels and
model transformations.

A model is an instance conforming to a metamodel. More generally, a meta-
model is a model of a modeling language where such language is speci�ed [14].
In other words, the metamodel describes the elements of the domain and their
relationships. Further work may address the variability of metamodels and its
relationship to that of models.

Model transformations play a pivotal role in MDD because they turn the use
of models for drawing into a more extensive model-driven usage where imple-
mentations can be directly obtained [19]. When talking about model transfor-
mations, two di�erent approaches must be distinguished: model-to-model trans-
formations and model-to-text transformations. Model-to-model transformations
usually make use of rules that are de�ned as mappings between input and output
metamodels. Model-to-text transformations combine rules with text templates
that de�ne the form of the output text.

This position paper outlines the need for extending variability beyond mod-
els. Further work may address the variability of model transformations and par-
ticularly its relationship to that of metamodels and models. Our current e�orts
are geared towards the step-wise re�nement of models, metamodels and model
transformations [21].

Related Work

Merging MDD and product lines is not new, we know of few examples that ex-
plicitly use features in MDD [6,5,7,8,9,18]. One is BoldStroke: a product-line for
supporting a family of mission computing avionics for military aircraft [9]. Czar-
necki introduces super-imposed variants and model templates to map features
to models [5]. Weber et al. introduce the Variation Point Model that models
variation points at the design level [23].

There is a line of work on feature-based composition of models. Feature-
oriented model-driven development is an approach that ties feature composition
to model-driven development [20]. Recent work by Apel describes superimposi-
tion as a model composition technique to support variability of product lines [1].
FeatureMapper is a tool that supports mapping features from feature models
to solution artifacts [10]. These works do not yet consider the composition of
model transformations or metamodels. Azanza introduces a metamodel-guided
composition algorithm [2].

48

Sanchez-Cuadrado presents an approach for the reuse of model transforma-
tions in RubyTL by using an idea reminiscent of libraries in programming [4].
This �rst step towards model transformation reuse does not still incorporate
the notion of product family. The superimposed modules of ATL language can
be composed into di�erent transformation de�nitions. This is not related to
features, neither to the notion of composition demanded in a product family
scenario [12]. Oldevik proposes an aspect-based extension of the MOFScript
model-to-text transformation language, which is called a Higher Order Trans-
formations (HOT) [15].

Aspect-Oriented MDD applies cross-cutting aspects to model artifacts. Par-
ticularly, there is recent work dealing with generators and model transformations
using openArchitectureWare [22].

These works provide a strong foundation for current research e�orts on
model-driven product-lines such as AMPLE (http://ample.holos.pt/) and feasi-
PLe projects (http://feasiple.de).

Conclusions

This position paper discussed whether model variability is enough for realizing
the Model-Driven Product-Line dream. We claim the need to shift our research
attention from the variability of models to a broader perspective embracing the
variability of models, metamodels and model transformations.

This is indeed the direction of our current research e�orts where we are
addressing the variability of models, metamodels, and model transformations
and their relationships, since in our cases they appear to be often closely inter-
related.

Acknowledgments. This work was co-supported by the Spanish Ministry
of Science & Innovation under contract TIN2008-06507-C02-02.

References

1. S. Apel, F. Janda, S. Trujillo, and C. Kaestner. Model Superimposition in Software
Product Lines. In 2nd International Conference on Model Transformations (ICMT
2009), Zurich, Switzerland, June, 2009.

2. M. Azanza, D. Batory, O. Diaz, and S. Trujillo. Metamodel-guided Composition
in Model Driven Product Lines. In Draft under Review, 2009.

3. P. Clements and L.M. Northrop. Software Product Lines - Practices and Patterns.
Addison-Wesley, 2001.

4. J. Sanchez Cuadrado and J. Garcia Molina. Approaches for Model Transforma-
tion Reuse: Factorization and Composition. In International Conference of Model
Transformations (ICMT), 2008.

5. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In 4th International Conference on Gen-
erative Programming and Component Engineering (GPCE 2005), Tallinn, Estonia,
Sep 29 - Oct 1, 2005.

49

6. K. Czarnecki and M. Antkiewicz. Model-Driven Software Product-Lines. In 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2005), San Diego, CA, USA, Oct 16-20,
2005.

7. S. Deelstra, M. Sinnema, J. van Gurp, and J. Bosch. Model Driven Architecture
as Approach to Manage Variability in Software Product Families. In Workshop on
Model Driven Architecture: Foundations and Applications (MDAFA), Enschede,
The Netherlands, June 26-27, 2003.

8. B. Gonzalez-Baixauli, M.A. Laguna, and Y. Crespo. Product Lines, Features, and
MDD. In 1st Europeean Workshop on Model Transformation (SPLC-EWMT'05),
Rennes, France, Sep 25, 2005.

9. J. Gray and et al. Model Driven Program Transformation of a Large Avionics
Framework. In 3th International Conference on Generative Programming and
Component Engineering (GPCE 2004), Vancouver, Canada, Oct 24-28, 2004.

10. F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping Features to
Models. In 30th International Conference on Software Engineering (ICSE 2008),
Companion, pages 943�944, New York, NY, USA, may 2008. ACM.

11. D. Herst and E. Roman. Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) - Approach: A Productivity Analysis. Technical re-
port, TMC Research Report, 2003.

12. F. Jouault and I. Kurtev. Transforming Models with the ATL. In Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS
2005), 2005.

13. K. C. Kang and et al. Feature Oriented Domain Analysis Feasability Study. Tech-
nical Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

14. I. Kurtev. Adaptability of Model Transformations. PhD thesis, University of
Twente, 2005.

15. J. Oldevik and O. Haugen. Higher-order transformations for product lines. Software
Product Line Conference, International, 0:243�254, 2007.

16. OMG. MDA Success Stories. http://www.omg.org/mda/products_success.htm.
17. K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering -

Foundations, Principles and Techniques. Springer, 2006.
18. D. Schmidt, A. Nechypurenko, and E. Wuchner. MDD for Software Product-Lines:

Fact or Fiction. In Workshop at 8th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2005), Montego Bay, Jamaica, Oct
2-7, 2005, 2005.

19. S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of
Model-Driven Software Development. IEEE Software, 20(5):42�45, 2003.

20. S. Trujillo, D. Batory, and O. Díaz. Feature Oriented Model Driven Development: A
Case Study for Portlets. In 29th International Conference on Software Engineering
(ICSE 2007), Minneapolis, MN, USA, May, 2007.

21. S. Trujillo and A. Zubizarreta. Lock-Step Re�nement of Models, Metamodels and
Model Transformations in Model-Driven Product-Lines. In Draft under Review,
2009.

22. M. Voelter and I. Groher. Handling Variability in Model Transformations and
Generators. In Proc of the DSM Workshop at OOPLSA, 2007.

23. D.L. Webber and H. Gomaa. Modeling Variability in Software Product Lines with
the Variation Point Model. Science of Computer Programming, 53, 2004.

50

A Model-based Product-Line for Scalable
Ontology Languages?

Christian Wende and Florian Heidenreich

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
{c.wende|florian.heidenreich}@tu-dresden.de

Abstract. Research in the area of semantic web brought up a plethora
of languages to represent ontologies. They all differ in expressiveness
and reasoning efficiency. Thus, the choice of a specific language means
a trade-off between reasoning capabilities and performance. This paper
outlines how techniques from product-line engineering can be combined
with model-based language engineering to allow for organising ontology
languages in a language family and configuring them for concrete use
cases.

1 Introduction

Ontologies provide means for encoding knowledge about specific domains and
often include reasoning rules that allow for deriving implicit knowledge. The
manifold of domains that ontology languages are applied to led to a plethora of
languages to represent ontologies. In this paper we focus on a subset of ontology
languages based on the OWL2 standard [25] that provides an implementation for
Description Logics (DLs) [1]. They share the common approach of representing
knowledge using hierarchies of unary atomic concepts that are augmented with
binary logical operators or roles to describe concept relationships. Expressiveness
and reasoning efficiency is directly determined by the concrete binary operators
a language provides [6]. Thus, the choice of a specific language means a trade-
off between performance and reasoning capabilities. To achieve scalability of
ontology languages both performance and functional requirements of a specific
use case need to be consider.

Customising ontology languages from a language family has been identified
to be a promising approach to address specifics of the use case they are applied
to [27]. In addition, it has a number of other benefits: (1) Common language fea-
tures can be reused among the language family members. (2) The family mem-
bers are organised in a systematic way. (3) Specific expressiveness and reasoning
requirements can be addressed by recombining existing language features. (4)

? This research has been co-funded by the German Ministry of Education and Research
(BMBF) within the project feasiPLe and by the European Commission within the
FP7 project MOST contract number 216691.

51

Ontology language evolution can be realised by contributing new features to the
language family. (5) Language tooling (e.g., dedicated parsers, printers, editors,
and reasoners) can be generated. To support a systematic approach for language
customisation, we argue for combining techniques from product-line engineer-
ing and model-based language engineering. This paper contributes a systematic
classification of ontology languages using the the paradigm of feature modelling.
This enables feature-based customisation of OWL2 w.r.t. a specific use case.
Second, we introduce a model-driven process to generate the tool infrastructure
that is crucial for the adoption of the language variant in knowledge modelling.

The rest of this paper is structured as follows: Section 2 discusses the ap-
plication of feature modelling to specify commonalities and variability among a
family of OWL2-based ontology languages and explains how to use this variabil-
ity information to select a language variant matching the needs of a specific use
case. Section 3 discusses the generation of the tool infrastructure that is crucial
for the application of a custom language variant. We introduce a model-driven
process to automatically generate a parser, printer, and editor for a given lan-
guage variant. For the sake of complexity we consider the generation of semantic
tooling (e.g. reasoners) out of the scope of this paper. However, even with ex-
isting reasoners reasoning efficiency can be scaled by purely syntactic language
adaptation [8, 13, 23]. We conclude and present future work in Section 5.

2 Feature-Based Ontology Language Configuration

The syntactic and semantic expressiveness of ontology languages is described
inductively by the DLs [1] constructors they provide for knowledge representation
[6]. The connection between reasoning characteristics of an ontology language
and its logical constructors motivates a guidance of language configuration by
means of singular logical constructors. Since constructors are interdependent and
interact, it is necessary to specify dependencies and relations between them. This
can be done using the paradigm of feature modelling.

The feature model depicted in Fig. 1 is based on the constructors used in
DLs to describe the expressiveness of ontology languages. It describes common-
alities and variability in our OWL2-based family of ontology languages. Every
feature represents a single constructor by its textual name and the letter used
in the usual naming conventions for DLs (for an overview see [1]). In addition,
a cardinality is given for every language feature. A feature connected by a line
ending with a filled circle represents a mandatory feature and is used in every
OWL2 language variant. Empty circles identify optional features.

All possible feature combinations span the variation space for our language
family. A concrete selection of features from this variation space describes a
specific ontology language variant. Its simplest member can be built using only
the mandatory features (Concepts, Top, Bottom, Intersection, AtomicNegation
and ValueRestriction). It corresponds to the minimal Attributive Language AL
that is considered the base of our desciption logics language family. By includ-
ing for example the optional features R+, C, H, O, I, N , and (D+) one could

52

Fig. 1. Feature model that describes the variability space of ontology languages

configure the language variant SHOIN (D+) with the expressiveness of OWL
DL [21]. When features or feature combinations are annotated with their im-
plications on reasoning efficiency (as studied in [6]), this feature model can be
used to guide the customisation process regarding language expressiveness and
efficiency. In addition, one can identify gaps in the language hierarchy and fill
them by configuring constructors or by adding new logical constructors.

This feature-based modularisation of languages introduces a foundation for
making reasoning technology more scalable: Optimised language variants can be
configured that take the concrete expressiveness and efficiency requirements of
a specific use case into account.

3 Model-based Ontology Language Engineering

There are three driving forces that made us address the problem of building the
language family in a model-based way. First, modelling techniques offer support
for transformation of models into other representations, e.g., reduced models
or more specific models. This is particularly needed when deriving a concrete
language from the language product-line. Second, models can be easily used for
code generation, which is needed to automatically generate tool support for the
concrete language. This is an important point, since building tools by hand is
an expensive task. Third, models usually share a common metamodel which
directly supports interoperability between different tools that are based on the
metamodelling technology at hand. We decided to use Eclipse and the Eclipse
Modelling Framework (EMF)1 because of the variety of tools that exist to create,
edit, and transform models based on EMF.

3.1 Language Family Development Process

The initial starting point for developing the ontology-language product line is
modelling the problem space by means of a feature model (cf. Fig. 1). We used
a lightweight version of the EMF/Ecore-based feature metamodel developed in
the feasiPLe project2.
1 http://www.eclipse.org/modeling/emf/
2 http://feasiple.de

53

Since we want to (1) transform the description of the solution space, that
is, the realisation of the language syntax features and (2) generate tooling (e.g.,
parsers, printers, editors, ...) out of the specification, we used Ecore to build an
OWL metamodel and EMFText3 [11]—a model-based tool for defining textual
concrete syntax for models. EMFText offers a dedicated language for specifying
text syntax for models called CS which is similar to Extended Backus-Naur Form
(EBNF). With CS, rules are defined which specify textual syntax for metaclasses
of a given Ecore-based metamodel. In our case, we first modelled the OWL meta-
model (based on [3]) which defines the abstract syntax of the various language
features. Then we derived CS rules that describe the textual syntax for the
concepts corresponding to OWL Manchester syntax [14].

Fig. 2. Using the FeatureMapper to map OWL features to specific parts of OWL2
abstract and concrete syntax

One observation we made in previous work [10, 12] is that it is crucial to have
a mapping between the problem space (i.e., a variability description of language
features in a feature model) and the solution space (i.e., a concrete realisation
of specific language features in EMFText’s CS language). This mapping can
then be used both for visualising dependencies between features and realisation
artefacts and for automating the product-instantiation process. An overview of
the models used to specify the the ontology language product line and their
relationships is depicted on the right part of Fig 3.

The FeatureMapper4 is a tool that was specifically developed to tackle that
problem and allows for creating a mapping between feature models and EMF-
/Ecore-based models. Since EMFText is built with itself, the CS language is
again a model-based language which can be used in combination with Fea-
tureMapper. We extended the FeatureMapper to also support mapping and

3 http://www.emftext.org
4 http://www.featuremapper.org

54

visualisation of textual languages that are created by EMFText and used it
to create a mapping between the language features in the feature model and
the realisation of those features in the CS specification. Both tools are depicted
in Fig. 2 where the view on the left side contains the FeatureMapper with the
feature model for the ontology-language product line. The editors on the right
side show a part of the OWL metamodel and CS specification for existing lan-
guages in the OWL language family. To present the concrete mapping to the
language developer the FeatureMapper colours the elements in the CS speci-
fication and the OWL metamodel in accordance to the colour of the feature
in the feature model they are mapped to. The example depicts the mapping
used to define the syntactic realisation of the feature InverseProperties. For
that purpose the association inverseProperties between ObjectProperty and
ObjectPropertyReference that is used in the abstract syntax to represent in-
verse properties and the corresponding fragment of concrete syntax are mapped
to the feature InverseProperties.

3.2 Language Derivation Process

After we defined the scope of the language product line, we are able to de-
rive concrete instances (i.e., languages) from that definition. To do so, the Fea-
tureMapper provides means to transform models according to a given feature
selection (a variant model) by interpreting the mapping model that contains the
various mappings between features and model elements. After this transforma-
tion step, a reduced CS specification is produced that only contains the rules
that are needed for the selected language features. This reduced CS specification
is then used by EMFText to generate a dedicated parser, printer, and editor.
The process of feature-based language derivation is depicted in Fig. 3.

Fig. 3. Model-based Ontology Language Derivation Process

55

4 Related Work

Scalability is a widely discussed and very prominent topic that constitutes a
main challenge for the application of ontology languages [6, 19]. The objective
of efficient reasoning has led to a manifold of languages with specific reasoning
characteristics [5, 2, 25, 20, 22]. The idea that scalability can be achieved by se-
lecting a language from this manifold that is appropriate for the requirements
of a specific use case is not new. In [17] the authors provide a comprehensive
comparison of nine DLs-based ontology languages w.r.t. their syntactic features
and reasoning efficiency. The results of this survey are envisaged as guideline
for matching ontology languages to use cases. The fact that the OWL2 stan-
dard [25] introduces three languages with different expressiveness and reasoning
characteristics illustrates that nowadays ontology languages are already designed
with that idea in mind. Our work picks up this idea and presents a methodical
approach and a technological infrastructure to get from language features se-
lected for a use case to the actual implementation of the language variant and
the corresponding tool infrastructure. In addition, the presented model-driven
approach is suited to deal with the proceeding evolution of ontology languages
by supporting the introduction of new language features.

A second branch of work addressing the scalability issue deals with the de-
velopment of more efficient reasoners or the enhancement of existing reasoning
techniques. This led to numerous highly optimised native ontology reasoners [9,
26, 28] that perform well even for expressive ontology languages but only for
reasonable sized ontologies. Large amounts of facts often result in poor response
times that impede applicability in practice [17]. Approaches presented in [4, 7, 29]
store ontologies in relational databases to use the optimised database query en-
gines for ontology reasoning. As discussed in [19] this leads to increased load-time
but more efficient reasoning compared to native ontology systems. In [16] on-
tologies are represented in disjunctive datalog programs. Additional algorithmic
optimisation can be applied on the datalog facts to enhance reasoning efficiency.
Other approaches [8, 13, 23, 24] enhance reasoning efficiency by approximating
more expressive ontology languages to less expressive ones. The reduction of
complexity leads to better reasoning performance while preserving the com-
pleteness and soundness of the reasoning results. Reasoners and approximation
approaches are designed for a very a specific subset of DLs features. Using a
generic tool like Sesame [4] that allows for exchanging the reasoning back-end
they can be combined with our feature-based ontology language configuration.
Thus, we could provide appropriate (semantic) reasoning infrastructure w.r.t. a
specific language variant.

5 Conclusion

The contribution of this paper is twofold: First, we transferred the existing DL-
based classification of ontology languages to the paradigm of feature modelling.
This enables feature-based customisation of OWL2 w.r.t. a specific use case.

56

Future work needs to enrich the current classification with further metadata
(e.g., efficiency annotations) that can be used to guide language configuration.
In addition to that, other ontology language extensions—like rule extensions [15]
or probabilistic extensions [18]—should be included in such classification.

Second, we presented a model-driven process to generate a dedicated parser,
printer, and editor from a given variant specification. This infrastructure is cru-
cial for the application of the language variant in knowledge modelling. In addi-
tion, the effort to provide new language extensions or language adaptations can
be reduced by using the introduced model-driven process.

The solution presented in this paper only tackles syntactic language varia-
tions. To advance the impact on reasoning efficiency and language applicability,
future work needs to investigate the possibilities of deriving language specific
infrastructure w.r.t. language semantics. This relates to topics as semantic ap-
proximation of OWL [24], and composition of language semantics [30].

The introduced approach for applying techniques of product-line engineering
for the systematic development of language families is not limited to ontology
languages. Thus, future work will also address its extension to other languages.

References

1. F. Baader. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

2. D. Berardi, A. Cali, D. Calvanese, and G. D. Giacomo. Reasoning on UML Class
Diagrams. Artificial Intelligence, 168, 2003.

3. S. Brockmans, P. Haase, and B. Motik. OWL 2 Web Ontology Language
MOF-Based Metamodel. Available at http://www.w3.org/2007/OWL/wiki/MOF-
Based Metamodel, 2007.

4. J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. The Semantic Web ISWC 2002,
pages 54–68, 2002.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385–429, 2007.

6. F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1–58, 1997.

7. Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable Distributed Ontology Reason-
ing Using DHT-Based Partitioning. Proceedings of the 3rd Asian Semantic Web
Conference on The Semantic Web, pages 91–105, 2008.

8. P. Groot, H. Stuckenschmidt, and H. Wache. Approximating Description Logic
Classification for Semantic Web Reasoning. 2005.

9. V. Haarslev and R. Moller. RACER system description. Automated Reasoning -
Lecture Notes in Computer Science, pages 701–706, 2001.

10. F. Heidenreich, I. Şavga, and C. Wende. On Controlled Visualisations in Software
Product Line Engineering. In Proceedings of the 2nd International Workshop on
Visualisation in Software Product Line Engineering (ViSPLE 2008), collocated
with the 12th International Software Product Line Conference (SPLC 2008), Sept.
2008.

57

11. F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. Derivation and
Refinement of Textual Syntax for Models. In Proceedings of the 5th European Con-
ference on Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009), June 2009. To appear.

12. F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping Features
to Models. In Companion Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), pages 943–944, New York, NY, USA, May 2008.
ACM.

13. P. Hitzler and D. Vrandecic. Resolution-based Approximate reasoning for OWL
DL. The Semantic Web ISWC 2005, 3729, 2005.

14. M. Horridge and P. F. Patel-Schneider. OWL 2 Web Ontology Language: Manch-
ester Syntax. Available at http://www.w3.org/TR/2008/WD-owl2-manchester-
syntax-20081202/, 2008.

15. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, 2004.

16. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ- description logic to dis-
junctive datalog programs. Proceedings of Principles of Knowledge Representation
and Reasoning, pages 152–162, 2004.

17. C. Keet and M. Rodriguez. Comprehensiveness versus Scalability: Guidelines
for choosing an appropriate knowledge representation language for bio-ontologies.
KRDB Research Centre Technical Report, KRDB07-5, 2007.

18. T. Lukasiewicz. Probabilistic Deduction with Conditional Constraints over Basic
Events. Journal of Artificial Inteligence Research, 1999.

19. L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL
ontology benchmark. The Semantic Web: Research and Applications, 2006.

20. D. McGuinness, R. Fikes, J. Hendler, and L. Stein. DAML+ OIL: an ontology
language for the Semantic Web. IEEE Intelligent Systems, 17(5):72–80, 2002.

21. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Available at http://www.w3.org/TR/owl-features/, 2004.

22. J. Pan and I. Horrocks. RDFS (FA): connecting RDF (S) and OWL DL. IEEE
Transactions on Knowledge and Data Engineering, 19:192.

23. J. Pan and E. Thomas. Approximating OWL-DL Ontologies. Proceedings of the
22nd National Conference on Artificial Intelligence (AAAI-07), 2007.

24. J. Pan, E. Thomas, D., and Sleeman. Ontosearch2: Searching and querying web
ontologies. Proceedings of WWW/Internet, 2006.

25. P. F. Patel-Schneider, P. P. Hayes, and I. Horrocks. OWL 2 Web On-
tology Language: Profiles: OWL-R. W3C Working Draft. Available at
http://www.w3.org/TR/owl2-profiles/]OWL-R, 2008.

26. E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web,
5(2):51–53, 2007.

27. H. Stuckenschmidt. Statement of Interest: Towards Ontology Language Customiza-
tion. Ontologies and Information Sharing, 2001.

28. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. Automated Reasoning - Lecture Notes in Computer Science, 4130:292, 2006.

29. J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A scalable OWL
ontology storage and inference system. The Semantic Web ASWC 2006, 4185:429,
2006.

30. S. Zschaler and C. Wende. Collaborating Languages and Tools - A Study in Fea-
sibility. Technical Report TU Dresden - TUD-FI08-06, 2008.

58

Multi-Variant Modeling?

Concepts, Issues, and Challenges

Bernhard Westfechtel1 and Reidar Conradi2

1 Angewandte Informatik 1, Universität Bayreuth
D-95440 Bayreuth

Bernhard.Westfechtel@uni-bayreuth.de
2 Norwegian University of Science and Technology (NTNU)

N-7491 Trondheim, Norway
Reidar.Conradi@idi.ntnu.no

Abstract. When applying model-driven engineering to a product line, there is a
need to deal with multi-variant models. So far, in industry software product line
engineering has primarily been applied to data represented in (text) files and di-
rectories. Applying variation to non-textual models is more difficult, since models
are complex structured objects. This paper presents basic concepts and discusses
some issues and challenges with respect to multi-variant modeling.

1 Introduction

Model-driven engineering (MDE) denotes an approach to software development which
strongly emphasizes the use of explicit and formal models throughout the whole soft-
ware lifecycle. Models do not merely serve as documentation. Rather, MDE aims at
developing executable models, eliminating the need for manual programming.

According to [1], software product line engineering (SPLE) is a paradigm to de-
velop software applications using platforms and mass customization. In this context,
the variability model plays a central role because it defines the dimensions of variation
supported by the product line.

So far, SPLE has been applied primarily to data represented as (text) files and di-
rectories. This picture is beginning to change. Model-driven product line engineering
(MPLE) has been addressed in several research projects [2–4], and initial tool support
has been provided by industry [5].

Nevertheless, the integration of model-driven and product line engineering still has
to be explored further; the field has not yet reached maturity. In this paper, we focus
on multi-variant modeling, i.e., the construction and representation of models incorpo-
rating multiple variants. We present concepts, issues, and challenges of multi-variant
modeling, and investigate the state of tool support.

? 1st International Workshop on Model-Driven Product Line Engineering (MDPLE 2009),
Twente, The Netherlands, June 2009

59

2 Bernhard Westfechtel and Reidar Conradi

muti-variant
model

visibility model

multi-variant
model

visibility model

. . .

va
ria

bi
lit

y
m

od
el

multi-variant product

(bound) variant
selection

product
configurator

single-variant
model

. . .

single-variant
model

product configuration

Fig. 1. Framework for multi-variant modeling

2 Multi-Variant Modeling

2.1 Conceptual Framework

Figure 1 introduces a simple conceptual framework for multi-variant modeling and
product configuration. A multi-variant software product is the union of all variants
of the software product. It is composed of a set of interrelated multi-variant models.
A global variability model defines the variation points and variants the product line is
required to support. For each multi-variant model, a visibility model defines in which
variants the elements of the model are contained. To obtain a specific product variant,
a bound variant selection is defined. Thus, for each variation point a specific variant is
selected. The product configurator evaluates the visibilities of the elements of multi-
variant models against the variant selection. It selects only those elements which are
visible under the current selection. Thus, the product configurator produces a set of
single-variant models, which are subsets of the underlying multi-variant models.

2.2 Variability Model

A variability model describes the variation points along which a software product may
vary, as well as supported combinations of variants (e.g., Feature-Oriented Domain
Analysis [6] or the Orthogonal Variability Model [1]). In the context of this paper,
we define a variability model as a relation vm ⊆ vp1 × . . . × vpm, where each vpi

represents a variation point3. The relation vm could be defined extensionally, i.e., by
enumerating all tuples in vm. Usually, vm is defined intensionally by some predicate vp
such that vm = {(v1, . . . vm)|vp(v1, . . . vm)}. A variant selection is a subset vs ⊆ vm.
The selection is bound if |vs| = 1; a bound selection corresponds to a single product
variant.

3 For feature models, it would be more appropriate to define a variant as a set rather than a tuple
of features and the variability model as a set of variants. However, this difference is immaterial
to the discussion below.

60

Multi-Variant Modeling 3

variant A variant B

a) b)

create initial
diagram
(variant A)
vispes = true
vispvs = true

true

true

true

true

true

add
variant B
vispes = B
vispvs = true

true

true

B

true

B

B

B

B

c)

Fig. 2. Example: flow diagrams

2.3 Single- and Multi-Variant Models

In the context of MDE, a model is an abstraction of the system to be built. A model
m is represented as a pair (E,S), where E denotes a set of a elements and S is a
structure defined on these elements. A model is an instance of some metamodel, which
defines the types of available model elements (e.g., data objects, composition relations)
and the constraints imposed on their combinations (e.g., by class diagrams and OCL
constraints). We may view a metamodel mm as a set of (potential) models conforming
to this metamodel, i.e., mm = {m|mp(m)}, where mp denotes a (complex) predicate
to be satisfied.

The simplest way to represent a multi-variant model is to reuse the metamodel of
single-variant models, i.e., single- and multi-variant models are instances of the same
metamodel mm. This approach assumes that the metamodel mm has been defined in
such a way that variation may be expressed under the constraints of mm. Consider, e.g.,
class diagrams, where variation may be expressed by disjoint subclassing or by realizing
interfaces by alternative classes. This kind of variability is called intrinsic. In fact, many
approaches to SPLE tacitly assume that it suffices to exploit intrinsic variability [4, 2, 7,
1]. Unfortunately, not all metamodels support intrinsic variability:

Example 1 (Flow diagrams). A (sequential) flow diagram is a connected graph which
consists of a single start node (no incoming, one outgoing control flow, cardinality
0/1), as well as multiple activity nodes (1/1), binary decision nodes (1/2), join nodes
(+/1), and end nodes (1/0). A multi-variant control flow diagram is given in Figure 2a.
Here, solid and dashed lines denote universal (mandatory) and variant-specific (op-
tional) parts, respectively. The multi-variant control flow diagram is not a valid control
flow diagram: The first activity node has more than one outgoing edge, and the end
node has more than one incoming edge. 2

A multi-variant model is a union of single-variant models. In general, we cannot
expect that such a union is a valid instance of a single-variant metamodel. In particular,
cardinality constraints for single-variant models may not hold for their superimposition.

61

4 Bernhard Westfechtel and Reidar Conradi

In universal multi-variant modeling, all model elements should be allowed to vary
(regardless of whether the modeler will apply variation universally or only with certain
methodological constraints). This can be achieved only by extrinsic variability, i.e., by
a “meta-level” mechanism universally applied to any kind of model. Such mechanisms
are provided e.g. by software configuration management systems, which add version
control to software objects.

2.4 Visibility Models

Each multi-variant model is associated with a visibility model which defines the visi-
bilities of the model elements. We may consider a multi-variant model as a set of pairs
(e, vis(e)), where e denotes an element and vis(e) its visibility. Visibilities may be
represented in different ways. For example, in the UML stereotypes, tagged values, or
annotations may be used to express visibilities. Formally, the visibility model may be
defined as a function vis which maps each model element onto the set of variants in
which it is visible: vis : E → 2vm, where vis(e) = vs is some (not necessarily bound)
variant selection. The visibility of a product element e may be presented by some visi-
bility predicate visp(e) such that vis(e) = {(v1, . . . , vm)|visp(e)(v1, . . . , vm)}.

Let e1 and e2 denote two variants of the “same” element (which assumes some
sameness criterion, e.g., element identifiers). The visibilities of different elements must
be disjoint:

e1 6= e2 ⇒ vis(e1) ∩ vis(e2) = ∅ (1)

2.5 Product Configuration

The product configurator takes a set of multi-variant models decorated with visibilities
and a variant selection. The variant selection should be consistent, i.e., vs ⊆ vm or
(in terms of predicates vsp for the variant selection and vp for the variability model, as
defined in Subsection 2.2):

vsp⇒ vp (2)

The product configurator returns a set of models whose elements are visible under
the current selection. Thus, for each selected element vs ⊆ vis(e). In terms of predi-
cates, this may be rephrased as follows:

vsp⇒ visp(e) (3)

If the variant selection is bound, for each element at most one variant will be se-
lected. In this case (which we will assume in the following), the product configurator
returns a set of single-variant models.

The configured models should be valid instances of the corresponding single-variant
metamodels. That is, the product configurator should produce a syntactically consistent
result (which is a necessary, yet not sufficient condition that the result is usable as it
stands). Unfortunately, this requirement is hard to guarantee in general. Counterexam-
ples may be constructed easily:

62

Multi-Variant Modeling 5

Example 2 (Inconsistencies in configured models). Three errors are contained in the
multi-variant flow diagram of Figure 2b:

1. The mandatory start node has been marked as optional (variant specific).
2. Its outgoing control flow has been marked as mandatory, even though the start node

is optional (this may give rise to a dangling control flow).
3. If the second activity node is omitted (with its adjacent control flows), the diagram

is no longer connected. 2

Thus, constraints must be imposed on the combination of visibilities, e.g., to pre-
serve product properties (well-formedness rules). For example, the first error in Exam-
ple 2 may be avoided by requiring that a mandatory element must not be marked as
optional. More precisely, the visibility of a mandatory component e1 (the start node)
must be implied by the visibility of the enclosing composite e2 (the flow diagram):

visp(e2)⇒ visp(e1) (4)

The second error may be avoided by a constraint referring to the dependencies be-
tween model elements. For some model m = (E,S), the structure S on its elements
E induces a dependency relation D ⊆ E × E, where d(e1, e2) holds if and only if e1

depends on e2. The visibility of a dependent element e1 must not exceed the visibility
of its master e2:

visp(e1)⇒ visp(e2) (5)

Since a mandatory component existentially depends on its enclosing composite, the
equations above jointly imply that their visibilities must be equal.

The product constraints defined above are necessary, yet not sufficient conditions
for product consistency. In general, arbitrarily complex constraints may be defined in
the metamodel. This is exemplified by the third error (the diagram is not connected).

2.6 Multi-Variant Editing

In the previous subsection, we have discussed product configuration, tacitly assuming
that a set of multi-variant models has already been created. In the following, we will
address the question how multi-variant models come into being. This requires some
way of multi-variant editing.

In the case of unfiltered editing, the user edits a multi-variant model, where all vari-
ants are displayed and modified simultaneously. This corresponds to editing a program
file with conditional compilation statements. The advantage of unfiltered editing con-
sists in the fact that the user sees all variants simultaneously and therefore may assess
the impact of changes better than in the case of filtered editing to be explained below.
On the other hand, the information overload incurred by the overlay of multiple variants
may be difficult to manage.

63

6 Bernhard Westfechtel and Reidar Conradi

In the case of filtered editing, the user edits a single variant called view. Usually,
it is desired that editing may affect more than just the variant displayed in the view.
One way to deal with this problem is to define an edit set which defines the scope of a
change [8]. A view is a bound variant selection vs, and the edit set is a set of variants
es containing vs. All elements are affected whose visibilities overlap with the edit set.

An alternative approach of filtered editing makes use of layers or change sets [9].
The user defines a single-variant view by a sequence of layers. Editing operations re-
fer to some designated layer, into which the performed changes are aggregated. The
scope of the changes is confined to the designated layer, which can be used to construct
multiple variants.

3 The UVM Approach

3.1 Background

This section briefly presents the UVM approach as an example for multi-variant man-
agement. UVM, which stands for Uniform Version Model [10], provides for extrinsic
variability. UVM offers a basic way to express variant handling, independent of (or-
thogonal to) the data or product model and the application of such models in a user
context. The approach has been applied to both textual and non-textual data (e.g., entity-
relationship diagrams [11]).

UVM was developed in the context of software configuration management (SCM).
The SCM landscape is dominated by systems which focus on temporal and cooperative
versioning (usually based on version graphs, see e.g. Subversion [12], CVS [13] or
ClearCase [14]) and provide only limited support for logical versioning (variants). For
this reason, SCM and SPLE are often perceived as more or less disjoint disciplines. For
example, BigLever Software Gears covers only product line variants and assumes that
revisions of the product line are managed by an SCM system [15].

However, work on multi-dimensional variation has been performed in several SCM
research prototypes, as well [16, 17]. Moreover, a few research projects in SCM were
dedicated to the development of a uniform version model, supporting all dimensions of
evolution through a single base mechanism (ICE [18] and UVM [10]).

3.2 Basic Versioning

In UVM, each stored and versioned information item (with application-specific gran-
ularity and interpretation) has a visibility tag called vis. There are as many pairs of
(visibility-value,item-value) as there are versions of this item. The visibility is a logical
expression in 3-nary logic over an open set of global versioning attributes.

UVM is based on filtered editing. The view is defined by a version choice, i.e. a
bound combination of versioning attributes. Depending on some version choice vc, the
visibilities will evaluate to false or true. This assumes, however, that all attributes
are completely bound, i.e., no unbound version settings left. The single-variant view is
then the (sequential) union of item-values with visibilities vis = true, and application-
specific tools will only see this visible subset.

64

Multi-Variant Modeling 7

The edit set is defined by an ambition, i.e., a logical expression with a partial binding
of versioning attributes. The version choice must lie inside the ambition:

vc⇒ amb (6)

The edit set defines the scope of the change. The visibilities of elements are man-
aged automatically. All new elements e inherit their visibilities from the ambition:

visnew(e) = amb (7)

Deletion of an element does not mean that the element is physically removed.
Rather, all versions of the element are no longer visible under the edit set (ambition).
This is achieved by constraining the visibilities:

visnew(e) = visold(e) ∧ ¬amb (8)

Example 3 (Multi-variant editing).
An example is given in Figure 2c. In the first step, the predicates for the edit set

and the view are both set to true. This results in an initial variant of the flow diagram,
where all elements carry the visibility true. For the nodes, the visibility is shown inside
the node. Edges carry visibilities, as well, but their visibilities are not displayed. The
flow diagram created so far corresponds to variant A in Figure 2a. The second step is
performed under the visibility B both for the view and the edit set. All elements created
so far qualify for the view. In the view, two activities (on the left) are deleted, and a
new branch of the control flow diagram is inserted (on the right). The new elements get
visibility B, the visibility of the deleted elements is constrained to ¬B. After the second
step, we obtain the multi-variant flow diagram of Figure 2a. Variant A is represented
implicitly (as ¬B). 2

3.3 Consistency Control

UVM supports consistency control through the following mechanisms:

Automated management of visibilities All performed changes are tagged consistently
with visibilities according to the rules given above. Thus, many errors can be
avoided which the user may introduce by defining visibilities individually and man-
ually.

Enforcement of product constraints In a data model layer above the core, product
constraints may be implemented. For example, the visibility of an association may
be narrowed down automatically (i.e., it is not visible if one of its ends is not visible)
[11].

Enforcement of version constraints The user may define constraints on the combina-
tion of versioning attributes (e.g., the variants Windows and Linux are mutually
exclusive). These constraints are exploited by a versioning assistant which supports
the user in consistent version selections.

65

8 Bernhard Westfechtel and Reidar Conradi

However, UVM cannot guarantee in general that a new version choice gives us a
single-variant that is consistent, either syntactically or wrt. static or dynamic semantics.
So a merge-edit operation may be needed when two attribute settings are combined in
a new version choice. In this way, a feedback cycle is realized: By editing a configured
variant, the capabilities of the product line are enhanced.

Example 4 (Merge-edit to reconcile mutually conflicting items from overlapping ver-
sions).

Consider a class diagram containing some class C, where two users have both added
some method called M in parallel. This results in two method variants M1 and M2 with
visibilities V1 and V2, respectively. Now, both variants are combined (automatic merge
step). This is achieved by the version choice V1 ∧ V2, which is also the ambition. Since
the version choice implies both visibilities (e.g., V1 ∧ V2 ⇒ V1), both method variants
M1 and M2 are selected simultaneously. This results in a name clash: Method M is
declared twice.

The user may now resolve the conflict in any desired way (e.g., by deleting or re-
naming one of the method variants, or by merging both variants manually into a single
combined variant). This manual edit step will eventually result in a consistent class
diagram (and associated implementation). When the changes are committed, the vis-
ibilities are updated for the changed elements. For example, in the case of a manual
merge, a new method variant M3 is created with visibility V1 ∧ V2, and the visibilities
of the old variants are narrowed down. For example, the new visibility of M1 will be
V1∧¬(V1∧V2) = V1∧¬V2. Thus, the old variants will not be selected any more under
the combination V1 ∧ V2. 2

4 Related Work

Table 1 compares UVM against a few tools for multi-variant modeling, all of which
rely on internal rather than external variability.

Feature Mapper [19, 4] is based on feature modeling and supports the annotation of
EMF models with visibilities. The user may switch between single- and multi-variant
views. Visibilities may be defined individually for each model element. Feature Mapper
also offers a recording mode where a visibility is defined beforehand and all elements
created are decorated automatically with this visibility. Consistency control is not ad-
dressed; Feature Mapper cannot guarantee (or check) that a configured model variant is
syntactically consistent.

Feature-based model templates were introduced in [7]. Cardinality-based feature
models [20] are used for the variability model. The approach refers to models whose
metamodels are defined with MOF and OCL. Product consistency of configured vari-
ants may be checked automatically [21]: By an abstract interpretation of well-formedness
rules given in OCL for the respective metamodel, it can be checked whether each variant
which may be configured according to a given feature model is consistent with respect

66

Multi-Variant Modeling 9

Feature Mapper Feature-based
model templates

EASEL UVM

Domain EMF models MOF- and
OCL-defined

models

Class diagrams (generic)

Variability internal internal internal external
Variability
model

feature model feature model layers three-valued logic

Variability
constraints

not supported excludes and
requires

implications logical expression

Multi-variant
representation

interleaved deltas interleaved deltas directed deltas interleaved deltas

Visibilities logical expression logical expression defined by layers logical expression
Visibility
management

manual or
automatic

manual automatic automatic

Multi-variant
editing

filtered or
unfiltered

unfiltered filtered filtered

Product
consistency

not addressed verifiable checked,
inconsistencies

tolerated

(in data model
layer)

Table 1. Classification of tools for multi-variant modeling

to these rules. In this respect, feature-based model templates go beyond the capabilities
of competing approaches.

EASEL [22] supports multi-variant editing for class diagrams. In contrast to the
other approaches compared here, EASEL relies on layers, i.e., directed deltas rather
than interleaved deltas. Instead of decorating model elements with visibilities, changes
(addition, deletion, and modification of model elements) are aggregated into layers
which may be composed dynamically. EASEL detects contradictory or inconsistent
combinations of layers automatically by analyzing the change operations contained in
the layers. Inconsistencies are tolerated, and may be fixed by the user in a similar way
as in UVM (merge-edit).

5 Conclusion

In this paper, we have examined multi-variant modeling, and we have briefly discussed
how an approach from SCM (the Uniform Version Model) may be applied to multi-
variant modeling. From our examination, we draw the following conclusions:

– Multi-variant modeling should be supported in a universal and uniform way. Uni-
versal means that each item of a model (elements, attributes, references, etc.) should
be allowed to vary. Uniform means that multi-variant modeling should be supported
by one generic base mechanism which may be applied to any kind of model, inde-
pendently of the underlying metamodel. In a layered architecture, we may push this

67

10 Bernhard Westfechtel and Reidar Conradi

argument even further and strive to provide a base layer which is even independent
of the metametamodel (and corresponding data model) [10].

– A multi-variant model is not necessarily just an ordinary model. Annotating ordi-
nary models with visibilities is limited to exploiting intrinsic variability. For uni-
versal multi-variant modeling, extrinsic variability is required.

– In the case of extrinsic variability, the union of single-variant models results in a
multi-variant model for which single-variant constraints might be violated. That
is, a multi-variant model is not necessarily a valid instance of a single-variant meta-
model.

– No matter whether intrinsic or extrinsic variability is applied: In general, it is hard
to guarantee even the syntactic consistency of configured single-variant models.
Some errors may be eliminated by appropriate management of visibilities, but this
is unlikely to work in all cases. As a consequence, modeling tools should be more
“forgiving”, i.e., they should be capable of processing inconsistent models; other-
wise, the user cannot conveniently check and fix the result produced by the config-
urator.

– Simple and intuitive tools are required for assisting the user in managing the com-
plexities of multi-variant modeling. Unfiltered editing raises the risk of information
overload. However, filtered editing exhibits some pitfalls, as well (e.g., adequate
definition of the scope of a change). More research is required on adequate user
interfaces.

– Even the best tools will not eliminate the complexity of multi-variant modeling.
Thus, a process is required which ensures disciplined use of the concepts.

Acknowledgments The authors gratefully acknowledge the constructive comments of
the unknown reviewers.

References

1. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Berlin, Germany (2005)

2. Bayer, J., Gerard, S., Haugen, Ø., Mansell, J., Møller-Pedersen, B., Oldevik, J., Tessier, P.,
Thibault, J.P., Widen, T.: Consolidated product line variability modeling. In Käköla, T.,
Dueñas, J.C., eds.: Software Product Lines: Research Issues in Engineering and Manage-
ment. Springer, Berlin (2006) 195–241

3. Stephan, M., Antkiewicz, M.: Ecore.fmp: A tool for editing and instantiating class models as
feature models. Technical Report 2008-08, University of Waterloo, Waterloo, Canada (2008)

4. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: Mapping features to models.
In: Companion Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), Leipzig, Germany, ACM Press (May 2008) 943–944

5. Krueger, C.W.: Leveraging the synergy of model-driven development and software product
line engineering. Technical Report #200710311, BigLever Software, Austin, TX (October
2007)

6. Chang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (November 1990)

68

Multi-Variant Modeling 11

7. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In Glück, R., Lowry, M.R., eds.: 4th International Conference on
Generative Programming and Component Engineering (GPCE 2005). LNCS 3676, Tallinn,
Estonia, Springer (October 2005) 422–437

8. Sarnak, N., Bernstein, R., Kruskal, V.: Creation and maintenance of multiple versions. In
Winkler, J.F.H., ed.: Proceedings of the International Workshop on Software Version and
Configuration Control, Grassau, Germany, Teubner Verlag (1988) 264–275

9. Goldstein, I.P., Bobrow, D.G.: A layered approach to software design. Technical Report
CSL-80-5, XEROX PARC, Palo Alto, California (1980)

10. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform version man-
agement. IEEE Transactions on Software Engineering 27(12) (December 2001) 1111–1133

11. Munch, B.P.: Versioning in a software engineering database — the change oriented way.
PhD thesis, NTNU Trondheim, Norway (1993) IDT-Report 1993:4, 265 p.

12. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Subversion.
O’Reilly & Associates, Sebastopol, California (2004)

13. Vesperman, J.: Essential CVS. O’Reilly & Associates, Sebastopol, California (2006)
14. White, B.A.: Software Configuration Management Strategies and Rational ClearCase. Ob-

ject Technology Series. Addison-Wesley, Reading, Massachusetts (2003)
15. Krueger, C.W.: The software product line lifecycle framework. Technical Report

#200805071r1, BigLever Software, Austin, TX (December 2008)
16. Mahler, A.: Variants: Keeping things together and telling them apart. In Tichy, W.F., ed.:

Configuration Management. Volume 2 of Trends in Software. John Wiley & Sons, New York
(1994) 73–98

17. Tryggeseth, E., Gulla, B., Conradi, R.: Modelling systems with variability using the PRO-
TEUS configuration language. In Estublier, J., ed.: Software Configuration Management:
Selected Papers SCM-4 and SCM-5. LNCS 1005, Seattle, WA, Springer (April 1995) 216–
240

18. Zeller, A., Snelting, G.: Unified versioning through feature logic. ACM Transactions on
Software Engineering and Methodology 6(4) (October 1997) 397–440

19. Heidenreich, F., Wende, C.: Bridging the gap between features and models. In: Proceedings
of the Second Workshop on Aspect-Oriented Product Line Engineering (AOPLE 07)

20. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice 10(1) (2005) 7–29

21. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-
formedness OCL constraints. In Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L., eds.: Pro-
ceedings 5th International Conference on Generative Programming and Component Engi-
neering (GPCE 2006), Portland, Oregon, ACM Press (October 2006) 211–220

22. Hendrickson, S.A., Jett, B., van der Hoek, A.: Layered class diagrams: Supporting the design
process. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proceedings 9th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MoDELS 2006).
LNCS 4199, Genova, Italy, Springer (October 2006) 722–736

69

