
Bridging the Gap Between Features and Models

Florian Heidenreich
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

florian.heidenreich@inf.tu-dresden.de

Christian Wende
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

christian.wende@inf.tu-dresden.de

ABSTRACT
Variability modelling with feature models is one key technique to
specify the problem space of Software Product Lines. To allow
for the automatic derivation of a product instance based on a given
variant configuration, a mapping between features in the problem
space and their realisations in the solution space is required. In this
paper we present an approach to define a mapping of features to
model fragments specifying the feature realisations. We differenti-
ate collaborative and aspectual features and show how these feature
types are supported by a modelling-language independent infras-
tructure which separates the mapping information and stores it in a
dedicated mapping model.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE); D.2.2 [Design Tools and Techniques]: Ob-
ject-oriented design methods

General Terms
Design, Languages

Keywords
Feature Modelling, Variability Modelling, Aspect-Oriented Soft-
ware Development, Product Line Engineering, Domain Specific
Languages, Graph Rewriting

1. INTRODUCTION
Variability modelling is used to express common and variable parts
within Product Line Engineering (PLE) and to explicitly define
constraints between different variable parts—so-called features. It
abstracts from concrete feature realisation through feature models
which is a powerful notion to handle the increased complexity in
PLE.

However, to build concrete products from a product line, features
have to be realised using software artefacts shared across the prod-
uct line. While variability modelling resides in the problem space,

the realisation of features is part of the solution space. To instanti-
ate products from a product line, feature realisations in the solution
space have to be included according to the presence of the fea-
tures in a variant model that is an instance of a feature model. To
support this transition from problem space to solution space in an
automated way, a mapping from features to software artefacts that
realise the features is needed. We differentiate two types of fea-
tures: features that have realisations connected to specific points in
the core and features that add duplicated artefacts scattered across
various points in an aspectual manner. An approach to map fea-
tures to software artefacts has to provide a means for mapping both
types of features to their realisation in a concise way.

In this paper we present our work on mapping features of the above-
mentioned different types from feature models to software arte-
facts. We provide a feasible approach to bridge the gap between
variability modelling and solution modelling that supports features
that cross-cut a software system in different ways. This mapping
describes how and where specific artefacts are included in the so-
lution models to realise features from feature models.

The rest of the paper is structured as follows. First, we introduce
the different feature types and give examples for each of them. In
Section 3 we present our approach for mapping features to models
which is based on a metamodel for expressing such mappings. The
paper concludes with a discussion of related work and a summary.

2. FEATURE TYPES
In our work we differentiate two feature types: collaborative fea-
tures and aspectual features. The first we call collaborative fea-
tures, because their realisation describes a self-contained set of
artefacts which are woven at predefined places to the core to add a
specific increment in collaborative functionality. The latter we call
aspectual features due to their quantifying nature [8] where the fea-
ture realisation can be applied to the core multiple times based on a
pattern over the core. There is no explicit distinction between them
when modelling the problem space, but they differ in the means
used for their realization in the solution space.

The distinction between different feature types is mainly based on
recent research done by Apel et al. [1] where a classification of
cross-cutting concerns into heterogeneous cross-cuts and homoge-
neous cross-cuts is presented. A heterogeneous cross-cut extends
multiple points in the core—each with a different extension. A ho-
mogeneous cross-cut extends a core at multiple points by adding
the same extension to each of them.

To exemplify our ideas we developed a small example that is based



Figure 1: The core model of the time sheet application

on a simple time sheet application. A time sheet is used to collect
the amount of a worker’s time spent on her job. Our initial imple-
mentation allows for collecting time intervals for specific workers.
Figure 1 depicts a class model for the core application.

A TimeSheetApp manages different Workers where each of
them is associated with Intervals that capture the time spent on
the Worker’s job.

2.1 Collaborative Features
Collaborative features have realisations that describe a heteroge-
neous cross-cut by means of a collaboration. There are specific
points in the core that can be localized to connect the artefacts re-
alising a feature. Figure 2 depicts the relationship between feature
artefacts and points in the core.

An example of a collaborative feature is the ability to manage dif-
ferent jobs for each worker in our time sheet application as shown
in Figure 3. Realisation artefacts are added to specific points of the
core, as highlighted by the circles. To realise the Job feature the
Job class is introduced and associated at two specific points with
the core artefacts Worker and Interval to replace their direct
composition.

Core

Feature

Figure 2: A collaborative feature that is connected to specific
localized points in the core.

2.2 Aspectual Features
Aspectual features are used whenever behaviour or structure needs
to be applied to the core multiple times. They describe homoge-
neous cross-cuts in the sense of Aspect-Oriented Software Devel-
opment (AOSD) [13]. Normally, the specific points in the core
where the feature should be applied are not known at modelling
time. Therefore aspect-oriented techniques for quantification of

Figure 3: The core of the time sheet application with the op-
tional feature Jobs

Feature

Core

Figure 4: An aspectual feature that is distributed to various
points in the core.

the aspectual feature are used to apply the feature artefacts at all
points in the core that are captured by a pattern that describes the
structure of the points of interest (cf. to the notion of pointcuts in
AOSD). An aspectual feature has a one-to-many relationship to the
core, because the whole feature realisation is distributed over the
core and connected at possibly multiple points (see Figure 4).

An example aspectual feature is adding authentication to the time
sheet application. This requires the worker to login before perform-
ing any of the CRUD operations (create, read, update and delete).
Since this is difficult to express by static modelling we introduce a
state chart that describes the dynamic behaviour of the CRUD op-
erations related to the Interval business object. Figure 5 shows
the state chart without authentication, where different states and
transitions related to interval management of the time sheet applica-
tion are depicted. The states that change the interval data by CRUD
operations can be reached from the Manage Timesheet state with-
out authentication. Figure 6 shows the state chart after enabling
the aspectual authentication feature. Artefacts added to the core to
realise the aspectual feature are shown in red. To realise authentica-
tion every transition in the core which is associated with a CRUD
operation is augmented by a Choice state: The CRUD operation
is only executed if the current user has authenticated (auth ==
true), otherwise she is redirected to a Login state. We introduce
graph-rewrite rules that are used to specify the necessary changes
to the core in Section 3.2.

3. MAPPING FEATURES TO MODELS
Variability modelling with feature models [5, 12] is used to express
the variability of features within a product line. In our work we aim



Manage Timesheet Enter Interval Data
new interval 

finish / create

Edit Interval Data

Confirm Remove

edit interval / read

remove interval / read

finish / update

finish / delete

end

Figure 5: A state-chart model of the time sheet application.

Manage Timesheet Enter Interval Data

new interval 

Edit Interval Data

Confirm Remove

Login

edit interval

remove
interval

login [password .correct () == true] / auth = true;

login [password .correct () == false ]

[auth == true] / delete

[auth == true] / update

[auth == true] / create

end
[auth == true] 

/ read

[auth == true] 
/ read

finish

finish

finish

[auth == false ]

[auth == false ][auth == false ]

[auth == false ]

[auth == false ]

Figure 6: The state-chart model of the time sheet application
with the aspectual feature Authentification

at bridging the gap between feature models and solution models to
enable the usage of feature models within a Model-Driven Software
Development (MDSD) [20] process. We designed a metamodel for
expressing generic mappings from features to their realisations that
supports both features with heterogeneous cross-cuts and homoge-
neous cross-cuts. We offer different means to realise the two fea-
ture types. This is motivated by previous work that showed that al-
though collaborations can be realised by aspect-oriented techniques
it is often not the most convenient way to do so [14].

We developed a plug-in for the Eclipse Platform [17] that supports
this mapping. It is based on the Eclipse Modelling Framework
(EMF) [4] that provides the Ecore metamodelling language which
is used to specify the abstract syntax for arbitrary modelling lan-
guages. Thus, the modelling of the solution space is not bound
to any concrete language and existing EMF-based modelling tools
(e.g. TOPCASED [18]) can easily be integrated. Our generic map-
ping model connects features from the problem space—expressed
by a feature model based on the feature metamodel developed by
the feasiPLe consortium [7]— with changes on artefacts of the so-
lution space. Since these changes reflect the Ecore-based language
specifications they preserve the well-formedness of solution space

models.

At modelling time the mapping information is used by the plug-in
to allow for an interactive adaptation of the solution space in accor-
dance to the feature selection (cf. Figure 1 and Figure 3). Thus, it
supports the logical separation of feature realisations from the core
as a distinct set of changes applied to a model, but still allows to
build views on the combined models. In a further step, the mapping
information can be used for automatic product instantiation based
on a given variant model.

3.1 Mapping Collaborative Features
As described in Section 2, collaborative features affect specific
unique points in the core that can be localised at modelling time.
Our solution allows to model the artefacts that realise a feature di-
rectly onto the core models and provides means to derive the cor-
responding mapping information automatically. The core models
consist of all mandatory features that have to be modelled initially.
To realise an optional collaborative feature the user first chooses
a specific feature from the feature model and then adapts the core
models with all artefacts that are realising the feature. The plug-
in provides means to record all changes made to a model while
modelling a specific collaborative feature. The change tracking is
implemented on top of EMF and is therefore completely language
independent. With respect to the relationships found between arte-
facts of modelling languages (to-one, to-n) we distinguish the fol-
lowing atomic change types in the mapping model:

Add An add change adds a set of distinct artefacts of the same type
to a specific point that can be bound multiple times with the
given artefact type.

Remove A remove change removes a set of distinct artefacts of the
same type from a specific point that can be bound multiple
times with the given artefact type.

Update An update change links an artefact to a specific point that
can only be bound once with the given artefact type.

After modelling, the mapping model connects every collaborative
feature with the set of changes which were applied to the core.

3.2 Mapping Aspectual Features
In contrast to collaborative features, aspectual features can not be
modelled directly onto the core without duplicating the artefacts,
since the individual points in the core where the artefacts of the
feature realisation need to be connected are not unique. Therefore,
we provide means to specify patterns that describe this points in
the core. When the pattern is matched, the artefacts that realise the
feature are connected to the matched points. This way, the patterns
can be evaluated at product instantiation and modelling time which
resolves the redundant duplication of the associated artefacts during
modelling the product line.

Previous work [2, 11] shows that graph-rewrite systems can con-
struct aspect weavers and explains the analogy between pointcuts
and patterns in graph-rewrite rules (left-hand sides, LHS), and be-
tween advice and right-hand sides (RHS) of graph-rewrite rules.
Since this technique is very powerful and language independent we
use graph-rewrite rules to modularise the realisation of aspectual
features and to describe the patterns that describe where to apply
the feature realisation.



Figure 7: Specification of the graph-rewrite rule for the realisation of the aspectual authentication feature (using the Tiger EMF
Transformation Project shown on the right and our Eclipse plug-in shown on the left).

Figure 7 depicts the FeatureMapping plug-in. It provides a Fea-
tureModellerView which is used during modelling time to select
the feature which is about to be realised and to build views on com-
bined solution models respecting the variability constraints of the
feature model. For product configuration it supports the specifica-
tion of complete and valid variant models. To realise the aspectual
feature from Section 2, Authentication is selected in the Feature-
ModellerView and associated though the mapping model with the
graph-rewrite rule shown on the right. The rule’s LHS describes
a pattern of state chart artefacts to identify the points in the core
which are to be augmented by artefacts of the authentication fea-
ture. Therefore, it searches for Transitions (1) associated with
an Activity that performs a CRUD operation (2). Additionally,
the source State (3), the target State (4), and the con-
taining Region (5) of the Transition are matched. To redirect
non-authenticated users the LHS-pattern also refers to the State
Login (6) which have to be contained in the Region. Every match
of this pattern is adapted by the RHS of the rule: The matched
Transition (denoted by the same colour of both nodes) is redi-
rected to the newly introduced Pseudostate Choice. This state
is the source of two Transitions which are associated with
guard Constraints to check the authentication status of the
user. If the user is authenticated the Transition loggedIn is
selected which executes the CRUD operation and leads to the orig-
inal target State. Otherwise the Transition notLoggedIn
redirects the user to the State Login. To avoid a repeated re-
placement of the same CRUD transition the negative application
condition (NAC) already authenticated is used which prohibits the
adaptation of Activitys that are associated with a Transi-

tion named loggedIn.

In our plug-in we use the graph-rewrite system Tiger EMF Trans-
formation Project [19] which is a framework for in-place EMF
transformations based on graph transformation. It supports the def-
inition of graph-rewrite rules on arbitrary EMF-based metamodels
and uses AGG [15, 16] as GRS.

4. RELATED WORK
In general two approaches to map between features and realisation
artefacts can be distinguished: the additive and the subtractive ap-
proach [10].

In [6] Czarnecki et al. present a subtractive approach, where a
monolithic model of the product’s solution space is specified. Enti-
ties of this model are annotated with presence conditions that refer
to features from the problem space. Presence conditions involve
several constructs such as checks of a feature’s presence/absence in
the configuration. If a presence condition is evaluated to false
the corresponding model entities are removed from the model, else
they remain. Thus, the selected features in a variant drive the spe-
cialisation of the monolithic solution space model in a subtractive
manner. For realistic scenarios the monolithic model gets very
complex and hard to understand, because it contains the realisation
of all features and gets polluted with lots of presence conditions.
Additionally, the realisations of features which cross-cut the so-
lution space gets scattered over the whole model and are therefore
hard to recognise. In our work we focused on resolving these issues
by externalising the mapping information to a dedicated mapping



model that allows for building dynamic views on the model and by
supporting the explicit definition of aspectual features.

In [3] Avila-García et al. present an approach that extends the work
of Czarnecki with a Domain-Specific Transformation language for
transforming model templates based on a given feature model.

In [11] we present an additive approach where the realisation for
each feature—collaborative or aspectual—is modelled separately
in an independent fragment. We use graph-rewrite rules to weave
them into the core architecture. Consequently, it is necessary to in-
troduce links or pointcut expressions to identify the weaving points.
The mapping between features and their realisations is implicitly
encoded in the rewrite rules. This reduces the cognitive gap be-
tween features and realisation artefacts by modularising the solu-
tion space. The architectural design is not polluted with presence
conditions which refer to the feature model leading to concise mod-
els and a clean separation of problem and solution space. Unfortu-
nately, the strict decomposition makes it hard to analyse the inter-
action and dependencies between artefacts that belong to different
features. The work presented in this paper tries to overcome the
abovementioned shortcomings by allowing views on the solution
space according to a specific variant model and by offering a more
natural way of modelling collaborative features.

XWeave [10] is another approach to weave aspect models for both
heterogeneous and homogeneous cross-cuts to a core model and,
thus, shares the drawbacks of [11]. It is motivated by the realisation
of features in PLE by distinct aspect models but in contrast to the
work presented in this paper, it does not allow for feature-model
driven building of views during product-line modelling.

5. SUMMARY AND FUTURE WORK
In this paper we motivated the distinction of aspectual and col-
laborative features to allow for a concise and modular specifica-
tion of feature realisations in the solution space. We presented
our language-independent approach which allows for mapping both
feature types to arbitrary realisation artefacts in the solution space
and separates mapping information in a dedicated mapping model
by means of an Eclipse plug-in. Furthermore, we discussed how an
interactive evaluation of the mappings during modelling time helps
to analyse the interaction and dependencies between artefacts that
belong to different features and motivated the importance of the
mapping model for product instantiation.

In our future work we would like to investigate the performance-
wise limitations we noticed while working with AGG which is also
confirmed by the performance comparison presented in [9]. Ex-
changing the GRS we used in our work would also require us to
extend an existing system with support for arbitrary EMF-based
languages which is a very promising goal.

We will address interactions between feature realisations which
strongly influence the product instantiation. These interactions can
be determined through an analysis of feature realisations and map-
ping information. Hence, we aim to extend our mapping approach
to automatically identify interacting features and provide means to
resolve interaction problems for using the mapping models in an
automated product instantiation process.

Additionally, we want to use our approach in a case study to val-
idate the completeness of the classification into collaborative and
aspectual features and to show the scalability of the mapping.

6. ACKNOWLEDGEMENTS
This work is supported by the feasiPLe project financed by the Ger-
man Ministry of Education and Research (BMBF).

7. REFERENCES
[1] S. Apel, D. Batory, and M. Rosenmüller. On the Structure of

Crosscutting Concerns: Using Aspects or Collaborations? In
Proceedings of the 1st Workshop on Aspect-Oriented Product Line
Engineering (AOPLE’06) co-located with the 5th Int’l Conf. on
Generative Programming and Component Engineering (GPCE’06),
Portland, OR, USA, Oct. 2006. Online Proceedings. URL
http://www.softeng.ox.ac.uk/aople/aople1/.

[2] U. Aßmann and A. Ludwig. Aspect Weaving with Graph Rewriting.
In Proceedings of the 1st Int’l Symposium on Generative and
Component-Based Software Engineering (GCSE’99), volume 1799
of LNCS, pages 24–36, Erfurt, Germany, Sept. 1999. Springer.

[3] O. Avila-García, A. E. García, and E. V. S. Rebull. Using software
product lines to manage model families in model-driven engineering.
In Proceedings of the 22nd Annual ACM Symposium on Applied
Computing (SAC’07), pages 1006–1011, Seoul, Korea, 2007. ACM
Press.

[4] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling
Framework. Pearson Education, 2003.

[5] K. Czarnecki. Overview of Generative Software Development. In
Proceedings of the Int’l Workshop on Unconventional Programming
Paradigms 2004 (UPP’04), volume 3566 of LNCS, pages 326–341,
Le Mont Saint Michel, France, Sept. 2005. Springer.

[6] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In R. Glück
and M. Lowry, editors, Proceedings of the 4th Int’l Conf. on
Generative Programming and Component Engineering (GPCE’05),
volume 3676 of LNCS, pages 422–437, Tallinn, Estonia, Sept. 2005.
Springer.

[7] feasiPLe Consortium. feasiPLe Research Project, Aug. 2007. URL
http://feasiple.de.

[8] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Proceedings of the 1st Workshop
on Advanced Separation of Concerns co-located with the ACM Conf.
on Object-Oriented Programming, Systems, Languages, and
Applications 2000 (OOPSLA’00), Minneapolis, MN, USA, Oct.
2000.

[9] R. Geiß and M. Kroll. On Improvements of the Varro Benchmark for
Graph Transformation Tools. Technical Report 2007-7, Universität
Karlsruhe, IPD Goos, July 2007. ISSN 1432-7864.

[10] I. Groher and M. Völter. XWeave: Models and Aspects in Concert. In
Proceedings of the 10th Workshop on Aspect-Oriented Modeling
(AOM@AOSD’07) co-located with the 6th Int’l Conf. on
Aspect-Oriented Software Development (AOSD’07), Vancouver,
Canada, Mar. 2007. ACM Press.

[11] F. Heidenreich and H. Lochmann. Using Graph-Rewriting for Model
Weaving in the context of Aspect-Oriented Product Line
Engineering. In 1st Workshop on Aspect-Oriented Product Line
Engineering (AOPLE’06) co-located with the 5th Int’l Conf. on
Generative Programming and Component Engineering (GPCE’06),
Portland, OR, USA, Oct. 2006. Online Proceedings. URL
http://www.softeng.ox.ac.uk/aople/aople1/.

[12] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 1990.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
M. Akşit and S. Matsuoka, editors, Proceedings of the 11th Europ.
Conf. on Object-Oriented Programming (ECOOP’97), volume 1241
of LNCS, Jyväskylä, Finland, June 1997. Springer.

[14] M. Mezini and K. Ostermann. Variability management with
feature-oriented programming and aspects. In Proceedings of the
12th ACM Int’l Symposium on Foundations of Software Engineering
(FSE-12), pages 127–136, Newport Beach, CA, USA, 2004. ACM
Press.

[15] G. Taentzer. AGG: A Graph Transformation Environment for System



Modeling and Validation. In T. Margaria, editor, Tool Exhibition at
Formal Methods 2003, Pisa, Italy, Sept. 2003.

[16] The AGG Project Team. AGG: The Attributed Graph Grammar
System, Aug. 2007. URL http://tfs.cs.tu-berlin.de/agg/.

[17] The Eclipse Foundation. The Eclipse Platform, Aug. 2007. URL
http://www.eclipse.org.

[18] The Topcased Project Team. TOPCASED, Aug. 2007. URL
http://www.topcased.org.

[19] Tiger EMF Transformation Project Team. Tiger EMF Transformation
Project, Aug. 2007. URL http://tfs.cs.tu-berlin.de/emftrans/.

[20] M. Völter and T. Stahl. Model-Driven Software Development. John
Wiley & Sons, June 2006.


